6: Intro to NHST

Review Questions

- 1. Beside estimation, what's the other main form of statistical inference?
- 2. Define "P value."
- 3. What guestion does the *P* value answer?
- 4. In generic terms, what does the null hypothesis state?
- 5. In generic terms what does the alternative hypothesis state?
- 6. Which hypothesis is initially considered to be true?
- 7. The evidence against the null hypothesis gets stronger and stronger as the P value __
- 8. True or false? A P value of .05 indicates the null hypothesis has only a 5% chance of being true.
- 9. True or false? A non-significant difference means there is a no difference between groups.
- 10. True or false? A statistically significant difference means there is a clinically important different between groups.
- 11. True or false? One study shows a statistically significant increase while another shows a statistically significant decrease. The results from these studies are therefore conflicting.

Exercises

- **6.1 Breast cancer revisited.** A researcher proposes that a particular population has a lifetime incidence of breast cancer rate that exceeds the expected rate. The expected lifetime incidence of female breast cancer was 1 in 10 (see Exercise 4.2 (initially mislabeled as 3.2). To test his hypothesis, the researcher selects a simple random sample (SRS) of n = 21 from the suspect population.
- (A) Convert the researcher's question into a null hypothesis. Using proper statistical notation.
- **(B)** Under the null hypothesis, the number of breast cancer cases any given SRS is X^{\sim} b(21, .1). You calculated this pmf in Exercise 4.2 (shown below). Then calculate the P value associated with seeing 3 cases in a given sample. [Note: P value = (data or data more extreme | Ho true) = $Pr(X \ge 3)$.]
- **(C)** What would the *P* value be if we found 4 cases in the SRS?
- **(D)** How many cases would you want to see before you would be surprised enough to say the number of cases is significantly greater than expected?

Part of the pmf X~b(21, .1) as calculated in Exercise 4.2.		
Х	Pr(X = x)	$Pr(X \le x)$
0	0.1094	0.1094
1	0.2553	0.3647
2	0.2837	0.6484
3	0.1996	0.8480
4	0.0998	0.9478
5	0.0377	0.9856
6	0.0112	0.9967
7	0.0027	0.9994
8	0.0005	0.9999
etc		
21	0.0000	1.0000