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11: Variances and Means

Review of variance and standard deviation

Variability measures are often based on sum of squares:

 2xxSS i 

The variance is the mean sum of squares. We rarely know population variance σ2, so we 
estimate it with the sample variance:

df

SS
s 2

where df is the degrees of freedom. For a single sample, df = n – 1. We lose 1 degree of 
freedom in estimating μ with x ; every time you use an estimate for a parameter to 
estimate something else, you lose one degree of freedom.

The standard deviation is the square root of the variance, or root mean square. The 
direct formula is:

df

SS
s 

I’m going to use a very small data set to demonstrate the sum of squares. Here it is: {3, 4, 
5, 8}. This data set has x = 5, SS = (3−5)2 + (4−5)2 + (5−5)2 + (8−5)2 = 4 + 1 + 0 + 9 = 

14, and df = 4 – 1. Therefore, 
3

14


df

SS
s = 2.16. The variance is just the square of 

the standard deviation, which in this case is s2 = 2.162 = 4.67. 

We usually report the standard deviation or variance (not both), as these are redundant. 

Interpretation: (a) The variance and standard deviation are measures of spread. The 
bigger they are, the more variability there is in the data. (b) For Normal populations, you 
can use the 68-95-99.7 rule to predict ranges of values. (c) Most data are not Normal.
(Sampling distribution of means tend to be Normal, but samples and populations do not.)
You can use Chebychev’s rule for non-Normal data; we can safely says that at least 
75% of a population will lie within μ ± 2.

Illustrative data: Age of participants, center 1. Ages in years of participants at a certain center 
are as follows: {60, 66, 65, 55, 62, 70, 51, 72, 58, 61, 71, 41, 70, 57, 55, 63, 64, 76, 74, 54, 58, 
73}. The data can be displayed graphically with the stemplot: 
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5|14
5|55788
6|01234
6|56
7|001234
7|6
×10 (years)

This data set has 22 observations. Data spread from 41 to 76 with a median of 62.5 (underlined). 
There is a low outlier, and the distribution has a mild negative skew. The sample mean is 62.545,

SS = (60−62.545)2 + (66−62.545)2 + …+ (73−62.545)2 = 1579.45, and s2 = 1579.455/ (22−1) = 
75.212. The standard deviation = √75.212 = 8.7. Exploratory graphs can be used to visualize the 
variance of the data. Figure 1 is a dot plot and mean ± standard deviation plot. Boxplot are 
nice, too (Figure 2). 

{Figure 1}
{Figure 2}

Testing two variances for inequality

When we have two independent samples, we can ask if the variances of the two 
underlying populations differ. Consider the following very small samples:

Sample 1: {3, 4, 5, 8}                  Sample 2: {4, 6, 7, 9}

The first sample has s2
1= 4.667 and the second has s2

2 = 4.333. Is it possible the observed 
difference is random and the variances in the populations are the same?  We can test null 
hypothesis H0: σ²1 = σ²2 and ask “What is the probability of taking samples from two 
populations with identical variances while observing sample variances as different as s2

1

and s2
2? If this probability is low (say, less than .06), we will reject H0 and conclude the 

two samples came from populations with different variances. If this probability is not too 
low, we will say there is insufficient evidence to reject the null hypothesis. We can test 
H0: σ²1 = σ²2 with the F statistic: 

2
2

2
1

2
2

2
1 or   

s

s

s

s
Fstat  , whichever is larger

Notice that the larger variance is placed in the numerator and smaller in the denominator. 
This statistic has df1 = n1 − 1 numerator degrees of freedom and df2 = n2 – 1 
denominator degrees of freedom. It is important to keep these degrees of freedom in the 
correct numerator-denominator order. 

For the very small data sets above (i.e., {3, 4, 5, 8} vs. {4, 6, 7, 9}), s2
1 = 4.667 and s2

2 = 
4.333. The test statistic Fstat = s2

1 / s
2
2 = 4.667 / 4.333 = 1.08 with df1 = 4  1 = 3 and df2
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= 4  1 = 3. Now we ask whether the observed F statistic is sufficiently far from 1.0 to 
reject H0. To answer this question, we convert the Fstat to a P value with Fisher’s F
distribution. 

Fisher’s F Distributions

F distributions are a family of distributions with each member identified by numerator 
(df1) and denominator (df2) degrees of freedom. They are positively skewed, with the 
extent of skewness determined by the dfs.

Let Fdf1,df2,q denote the qth percentile of an F distribution with df1 and df2 degrees of 
freedom. As usual, the area under the curve represents probability, and the total area 
under the curve sums to 1. Figure 3 shows an F value with cumulative probability q and 
right-tail region p. 

{Figure 3}

Our F table (available online) lists critical value for tail regions of 0.10, 0.05, 0.025, 
0.01, and 0.0001 for various combinations of df1 and df2. Therefore, for most problems, 
you will need to wedge observed F statistics between landmarks in this table to find the P
value. As an example, an Fstat of 6.01 with df1 = 1 and df2 = 9 falls between Ps of 0.05 
and 0.025. A more precise P values can be derived with StaTable or WinPepi, which in 
this case derives P = 0.037.

Testing two means for inequality without assuming σ2
1 = σ2

2

Recall that in Unit 8 we tested two independent means for inequality with Student’s t
test. This test required us to pool variances from the two samples to come up with a 
pooled estimate of variance (s2

pooled). We then used this variance to calculate a pooled 
standard error. This approach is fine for groups with (nearly) equal variances, but can be 
unreliable when group variances differ widely. In such instances, it is best to use a test of 
means that does not assume equal variances. The problem of testing group means from 
populations with different variances is known as the Fisher-Behrens problem. 

There are several different procedures that can be used to test means in the face of 
unequal population variances. You are probably familiar with the SPSS output that says 
“variances not assumed to be equal.” This determines inferential statistics with the Welch 
procedure, which uses this standard error of the mean difference:
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The degrees of freedom associated with this estimate is 

 
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 where 
1

1
1 n

s
SEx   and 

2

2
2 n

s
SEx  . 

Because calculation of dfWelch is tedious, we may when working by hand use the smaller 
of df1 = n1 − 1 or df2 = n2 − 1 as a conservative approximation for the degrees of freedom:

dfconserv = the smaller of df1 and df2

The degrees of freedom are never less than the smaller of df1 and df2 (Welch, 1938, p. 
356). Using dfconserv creates a (1 –α)100% confidence interval will capture the parameter 
more than (1–α)100% of the time.

A 95% confidence interval for μ1 – μ2 is calculated with the usual formula:

(point estimate) ± t ∙ SE

where point estimate = 21 xx  , t = the t percentile corresponding to the desired 
confidence level (using dfWelch or dfconserv, whichever is handy), and SE is the standard 
error of the difference in means shown just above. 

The t test can be performed with the test statistic 

SE
t

estimatepoint 
stat 

Illustrative example (Familial blood glucose). Blood glucose is determined in twenty-
five 5-year-olds whose fathers have type II diabetes (“cases”) and twenty comparable 
controls whose fathers have no history of type II diabetes. Cases have mean fasting blood 
glucose of 107.3 mg/dl (standard deviation = 9.6 mg/dl). The controls have a mean of 
99.7 mg/dl (standard deviation = 5.2 mg/dl). 

Note that the cases have about twice the standard deviation of control. Also note that an F
test of, H0: σ²1 = σ²2 determines Fstat = 9.6² / 5.2² = 3.41 with df1 = 24 and df2 = 19 (P = 
0.0084). Because variances seem to differ significantly, we apply unequal variance t 
procedures. Intermediate calculations for the problem are:

 Point estimate of mean difference = 21 xx   = 107.3 – 99.7 = 7.6 
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s

n

s
SE xx = 2.245. 

 Since dfWelch is a tedious to calculate, we use the smaller of n1 − 1 or n2 − 1 as the 
degrees of freedom, which in this case is 19. 

 For at least 95% confidence, use t19, 0.975 = 2.09 (from the t Table)

95% confidence interval for μ1 – μ2 = (point estimate) ± t ∙ SE = 7.6 ± (2.09)(2.245) = 
(2.9, 12.3) mg / dl. This indicates that there is a small (but detectable) difference in the 
two populations.

In testing μ1 – μ2 = 0, 
245.2

6.7estimatepoint 
stat 

SE
t  = 3.39 with dfconserv = 19, P = 

0.0031, confirming that the observed difference is highly unlikely to be a chance 
observations (so-called statistical significance).


