Exploratory and Summary Statistics (Chapters 3 \& 4)

Statistic	Parameter	Point Estimate	Formula	Interprétation	Notes
Sum of squares	$\sigma^{2} \times d f$	$S S$	$S S=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}$	No easy interpretation.	\bullet Mean
μ	\bar{x}	$\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$	Mean and standard deviation are best suited to symmetrical distributions. Ahen distribution is Normal, 68% of data location; balancing pt.	When ditral points lie within $\pm 1 \sigma$ of $\mu, 95 \%$ within $\pm 2 \sigma$ of μ, and 99.7% lie within $\pm 3 \sigma$ of μ	
Variance	σ^{2}	s^{2}	$s^{2}=\frac{S S}{n-1}$	A measure of spread expressed in units squared	For other distributions, use Chebychev's rule (e.g., at least 75% of data lie within $\pm 2 \sigma$ of $\mu)$.
Standard Deviation	σ	s	$s=\sqrt{s^{2}}$ or $\sqrt{\frac{S S}{n-1}}$A measure of spread expressed in data units. More appropriate for descriptive purposes.		

Statistic	Formula	Interpretation	5-point Summary	Notes of boxplot
Median	Median has depth of $\frac{n+1}{2}$	A measure of central location	Q0 - Minimum Q1 - First Quartile Q2 - Median Q3 - Third quartile Q4 - Maximum	-Provide information about locations, spread, and shape. The box contains middle 50% of data. Line inside the box is the median. Anything above the upper fence or below the lower fence is "outside." (Fences are not drawn.) Plot outside values as separate points.
Interquartile Range (IQR)	$I Q R=Q 3-Q 1$	A measure of spread, aka "hinge-spread"	The lower whisker is drawn from Q1 to the lower inside value. The upper whisker is drawn from Q3 to the upper inside value.	
Lower Fence $\left(F_{l}\right)$	$F_{l}=Q 1-1.5(I Q R)$	Helps determine: Lower inside value Lower outside value(s)		
Upper Fence $\left(F_{u}\right)$	$F_{u}=Q 3+1.5(I Q R)$	Helps determine: Upper inside value Upper outside value(s)		

Basic Biostatistics Formulas
 Jane Pham \& B. Burt Gerstman

Probability (Chapters 5-7)

- Probability \equiv relative frequency in the population; expected proportion after a very long run of trials; can be used to quantify subjective statements.
- Properties of probabilities

Basic: (1) $0 \leq \operatorname{Pr}(\mathrm{A}) \leq 1$; (2) $\operatorname{Pr}(\mathrm{S})=1$; (3) $\operatorname{Pr}(\overline{\mathrm{A}})=1-\operatorname{Pr}(\mathrm{A})$; and (4) $\operatorname{Pr}(\mathrm{A}$ or B$)=\operatorname{Pr}(\mathrm{A})+\operatorname{Pr}(\mathrm{B})$ for disjoint events.
Advanced: (5) If A and B are independent, $\operatorname{Pr}(\mathrm{A}$ and B$)=\operatorname{Pr}(\mathrm{A}) \cdot \operatorname{Pr}(\mathrm{B})(6) \operatorname{Pr}(\mathrm{A}$ or B$)=\operatorname{Pr}(\mathrm{A})+\operatorname{Pr}(\mathrm{B})-\operatorname{Pr}(\mathrm{A}$ and B$)(7) \operatorname{Pr}(\mathrm{B} \mid \mathrm{A})=\operatorname{Pr}(\mathrm{A}$ and B$) / \operatorname{Pr}(\mathrm{A})(8) \operatorname{Pr}(\mathrm{A}$ and B$)=\operatorname{Pr}(\mathrm{A}) \cdot \operatorname{Pr}(\mathrm{B} \mid \mathrm{A})(9) \operatorname{Pr}(\mathrm{B})=[\operatorname{Pr}(\mathrm{B}$ and A$)]+\operatorname{Pr}(\mathrm{B}$ and $\overline{\mathrm{A}})(10)$ Bayes' Theorem (p. 111)

- Binomial variables: $X \sim \mathrm{~b}(n, p), \operatorname{Pr}(X=x)={ }_{n} C_{x} p^{x} q^{n-x}$ where ${ }_{n} C_{x}=\frac{n!}{x!(n-x)!}$ and $q=1-p$
- Cumulative probability: $\operatorname{Pr}(X \leq x)=$ sum all probabilities up to and including $\operatorname{Pr}(X=x)$; corresponds to AUC in the left tail of the pmf or pdf.
- Normal variables: $X \sim \mathrm{~N}(\mu, \sigma)$. To determine $\operatorname{Pr}(X \leq x)$, standardize $z=\frac{x-\mu}{\sigma}$ and look up cumulative probability in Z table. Use the fact that the AUC sums to 1 to determine probabilities for various ranges.
To find a value that corresponds to a given probability, look up closest z_{p} in the Z table and then unstandardize according to $x=\mu+z_{p} \cdot \sigma$.

Introduction to Inference (Chapters 8-11)

- The sampling distribution of the mean (SDM) is governed by the central limit theorem, law of large numbers, and square root law. When n is large, $\bar{x} \sim N\left(\mu, \sigma_{\bar{x}}\right)$ where $\sigma_{\bar{x}}$ is the standard error (SE) and is equal to $\frac{\sigma}{\sqrt{n}}$. The standard estimate is estimated by $\frac{s}{\sqrt{n}}$ when the population standard deviation is not known.
- ($\mathbf{1}-\boldsymbol{\alpha}) \mathbf{1 0 0 \%}$ confidence interval for $\boldsymbol{\mu}$. Use $\bar{x} \pm z_{1-\frac{\alpha}{2}} \cdot S E_{\bar{x}}$ when σ is known. Use $\bar{x} \pm t_{n-1,1-\frac{\alpha}{2}} \cdot S E_{\bar{x}}$ when relying on s.
- Hypothesis testing basics. Know all the steps, not just the conclusion and keep in mind that hypothesis tests require certain conditions (e.g., Normality, independence, data quality) to be valid. The steps are:
A. H_{0} and H_{1} [For one-sample test of a mean, $H_{0}: \mu=\mu_{0}$ where μ_{0} is the mean specified by the null hypothesis.]
B. Test statistic [For one-sample test of a mean, use either $z_{\text {stat }}=\frac{\bar{x}-\mu_{0}}{S E_{\bar{x}}}$ or $t_{\text {stat }}=\frac{\bar{x}-\mu_{0}}{S E_{\bar{x}}}$ with $d f=n-1$.]
C. P-value. Convert the test statistic to a P-value. Small $P \rightarrow$ strong evidence against H_{0}.
D. Significance level. It is unwise to draw too firm a line. However, you can use the conventions regarding marginal significance, significance, and high significance when first learning.
- Power and sample size basics. Approach from estimation, testing, or "power" perspective. Sample size requirement for limiting margin of error m is given by $n=\left(z_{1-\frac{\alpha}{2}} \frac{\sigma}{m}\right)^{2} \quad$ The power of testing a mean is $1-\beta=\Phi\left(-z_{1-\frac{\alpha}{2}}+\frac{|\Delta| \sqrt{n}}{\sigma}\right)$. The sample size requirement of a one-sample z or t test: $n=\frac{\sigma^{2}\left(z_{1-\beta}+z_{1-\frac{\alpha}{2}}\right)^{2}}{\Delta^{2}}$. It is OK to use s as a substitute for σ in power and sample size formulas, when necessary.

Basic Biostatistics Formulas
Jane Pham \& B. Burt Gerstman

Inference

	Parameter \downarrow estimator	df	Standard Error	Test Statistic
Chapter 11: Inference about a Mean	$\begin{aligned} & \mu \\ & \underline{\imath} \\ & \bar{x} \end{aligned}$	$n-1$	$S E_{\bar{x}}=\frac{s}{\sqrt{n}} \quad \quad \bar{x} \pm t_{d f, 1-\frac{\alpha}{2}} \cdot S E_{\overline{\bar{x}}}$	To test $H_{0}: \mu=\mu_{0}$ $t_{\text {stat }}=\frac{\bar{x}-\mu_{0}}{S E_{\bar{x}}}$
Chapter 12: Comparing Independent Means	$\begin{gathered} \mu_{1}-\mu_{2} \\ \uparrow \downarrow \\ \left(\bar{x}_{1}-\bar{x}_{2}\right) \end{gathered}$	$d f_{\text {welch }}$ via computer or smaller of $d f_{1}$ or $d f_{2}$ for $d f_{\text {conserv }}$	$S E_{\bar{x}_{1}-\overline{x_{2}}}=\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}} \quad\left(\bar{x}_{1}-\bar{x}_{2}\right) \pm t_{d f, 1-\frac{\alpha}{2}} \cdot S E_{{\overline{x_{1}}-x_{2}} \text { }}$	To test $H_{0}: \mu_{1}=\mu_{2}$ $t_{\text {stat }}=\frac{\bar{x}_{1}-\bar{x}_{2}}{S E_{-\bar{x}_{1}-\bar{x}_{2}}}$
Chapter 16: Inference About a Proportion	$\begin{aligned} & p \\ & \hat{\imath} \\ & \hat{p} \end{aligned}$	N/A	$\widetilde{p} \pm z_{1-\frac{\alpha}{2}} \cdot S E_{\widetilde{p}}$ where $\begin{aligned} & \widetilde{p}=\frac{\widetilde{x}}{\widetilde{n}} \text { where } \quad \text { and } S E_{\widetilde{p}}=\sqrt{\frac{\widetilde{p} \widetilde{q}}{\widetilde{n}}} \\ & \widetilde{x}=x+2, \widetilde{n}=n+4\end{aligned}$ To limit margin of error m, use $n=\frac{z_{1-\alpha / 2}^{2} \cdot p^{*} q^{*}}{m^{2}}$	$\begin{gathered} \text { To test } H_{0}: p=p_{0} \\ z_{\text {stat }}=\frac{\hat{p}-p_{0}}{S E_{\hat{p}}} \text { where } \\ S E_{\hat{p}}=\sqrt{\frac{p_{0} q_{0}}{n}} \end{gathered}$
Chapter 17: Comparing Two Proportions	$\begin{gathered} \left(p_{1}-p_{2}\right) \\ \hat{\imath} \\ \left(\hat{p}_{1}-\hat{p}_{2}\right) \end{gathered}$	N/A	$\left(\widetilde{p}_{1}-\widetilde{p}_{2}\right) \pm z_{1-\frac{-}{2}} \cdot S E_{\tilde{p}_{1}-\tilde{p}_{2}}$ where $\tilde{p}_{i}=\frac{\tilde{a}_{i}}{\tilde{n}_{i}}, \widetilde{a}_{i}=a_{i}+1, \tilde{n}_{i}=n_{i}+2$, and $S E_{\tilde{p}_{1}-\tilde{p}_{2}}=\sqrt{\frac{\tilde{p}_{1} \tilde{q}_{1}}{\widetilde{n}_{1}}+\frac{\widetilde{p}_{2} \tilde{q}_{2}}{\widetilde{n}_{2}}}$	To test $H_{0}: p_{1}=p_{2}$ $\begin{gathered} z_{\text {stat }}=\frac{\hat{p}_{1}-\hat{p}_{2}}{\sqrt{\bar{p} \cdot \bar{q}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}} \\ \text { where } \bar{p}=\frac{a_{1}+a_{2}}{n_{1}+n_{2}} \end{gathered}$

