Additional Case-Control Formulas

Independent samples

• The odds ratio $OR = \frac{A_1 B_0}{A_0 B_1}$. (The second edition of the text uses this symbol $\hat{\psi}$ to represent the

odds ratio estimate.

- The odds ratio in the population is stochastically equivalent to its rate ratio. When risks in the population are low (less than 5%), the odds ratio may be interpreted as a risk ratio.
- The standard error of natural log (ln) of the odds ratio $SE_{\ln OR} = \sqrt{\frac{1}{A_1} + \frac{1}{B_1} + \frac{1}{A_0} + \frac{1}{B_0}}$. A 95%

NM

confidence interval for the *OR* parameter is given by $e^{\ln \hat{O}R \pm (1.96)(SE)}$.

• A *P* value can be derived with this test statistic:
$$z = \frac{A_1 - \frac{N_1 N_1}{N}}{\sqrt{\frac{N_1 N_0 M_1 M_0}{N^2 (N-1)}}}$$

Match-pairs

With matched-pairs, each case-control pair represents an observation. Matched pairs are then cross-tabulated like this:

	Control E+	Control E-
Case E+	t	и
Case E-	v	w

- The odds ratio is $OR = \frac{u}{v}$
- The standard error of natural log (ln) of the odds ratio is $SE = \sqrt{\frac{1}{u} + \frac{1}{v}}$, and the the 95% confidence interval for the *OR* parameter is given by $e^{\ln \hat{O}R \pm (1.96)(SE)}$

• A *P* value can be derived with this test statistic
$$z = \sqrt{\frac{(u-v)^2}{u+v}}$$