Wr and	Instructions: (1) Answer questions in your blue book. <i>Remember to number each response.</i> (2) Write your name on your blue book and on this test. (3) You are allowed to use your calculator and formulas sheets with tables. (4) Time limit: 1½ hours. (5) Each question is worth one point unless otherwise noted. Best of luck! (<i>Chance favors the prepared mind.</i> Oliver Wendell Holmes)							
Int	roduction to	confidence interv	vals					
1)	Multiple choic	ce [M/C]: In lab you	found that the population you sa	ampled was not Normal,				
	but that the dis	stribution of means	from SRSs from the population t	ended to distribute				
	themselves No	ormally. This was an	effect the:					
	(a) Law of large numbers (b) Square root law							
	(c) Central lim	nit theorem	(d) None of the above	(d) None of the above				
2)	() [M/C]: The average of the sampling distribution of a mean is equal to:							
	(a) µ	(b) \overline{x}	(c) σ/\sqrt{n}	(d) none of the above				
3)	[M/C]: The sta	andard deviation of	a sampling distribution of a mean	n is equal to:				
	(a) σ	(b) <i>s</i>	(c) σ/\sqrt{n}	(d) none of the above				
4)) [M/C]: Which is the most precise reflection of a population mean?							
	(a) An individual observation drawn at random from the population							
	(b) A sample mean based on an SRS of $n = 10$							
	(c) A sample r	nean based on an SI	RS of $n = 30$					
Th	e next five que	stions address a sa	mple from a population that h	as a Normal distribution				

The next five questions address a sample from a population that has a Normal distribution with $\mu=100$ and $\sigma=15$.

- 5) What is the standard error of a mean based on 25 observations? (numerical answer)
- 6) What is the margin of error for a 95% confidence interval for μ when based on n = 25? (numerical answer)
- 7) A sample based on n = 25 reveals $\bar{x} = 97$. What is the *lower* confidence limit for the 95% confidence interval for μ based on this sample? (numerical answer)
- 8) What is the upper confidence limit for the 95% confidence interval? (numerical answer)
- 9) Did your confidence interval capture μ? (Yes or no.)

- 10) In the long run, what percentage of 95% confidence intervals for μ will fail to capture μ?
- 11) What percentage of 95% confidence intervals for μ will fail to capture \bar{x} ?

The next four questions address a sample of n = 30 in which $\bar{x} = 40$ and s = 12.

- 12) What is the standard error of the mean for these data?
- 13) How many *df* does the *t* value have for these data? What is the value of *t* for 95% confidence? [2 pts]
- 14) What is the *lower* limit of the 95% confidence interval for μ ?
- 15) What is the *upper* limit of the 95% confidence interval for μ ?

Introduction to hypothesis tests

This first series of questions address this hypothetical situation:

- 16) A sample of 9 individuals from a population with a Normal distribution, $\mu = 100$ and $\sigma = 15$ will have a standard error of 5. Based on this information, what percentage of sample means will be greater than 110?
- 17) You want to test H_0 : $\mu = 100$ from this population. What is the two-sided alternative hypothesis?
- 18) Your sample of n = 9 shows $\bar{x} = 108$. Calculate the test statistic for this problem.
- 19) Determine the one-sided *P* value for the problem.
- 20) Determine the two-sided P value for the problem.
- 21) Interpret the two-sided P value. Is the evidence it provides against H_0 significant?
- 22) You have decided to reject a null hypothesis that is in fact true. Therefore, you have made

 (a) a type I error
 (b) a type II error
 (c) the correct decision

 23) You have decided to retain a null hypothesis that is in fact true. Therefore, you have made

 (a) a type I error
 (b) a type II error
 (c) the correct decision

 24) A P value of 0.07 provides evidence against the null hypothesis that is:
- a) not significant
 - b) marginally significant
 - c) significant
 - d) highly significant

We want to test whether a population gains weight. A sample of 25 individuals from this population finds an average weight gain 0.75 pounds with standard deviation 1.3 pounds.

25) Write the *null* hypothesis for this problem.

26) Calculate the standard error of the mean.								
27) Calculate the test statistic to address the null hypothesis.								
28) How many degrees of freedom are associated with the test statistic?								
29) What is the two-sic	ded P value for	this problem?						
30) Interpret your test	results.							
Paired samples								
31) What are <i>paired so</i>	amples? (One s	entence narrativ	re response.)					
32) [M/C] This is the	probability of	avoiding a type	II error:					
a) alpha	b) confidence	e	c) beta	d) power				
33) $\Phi(-0.23) = ?$								
34) [M/C] Increasing t	he size of samp	ple will do this t	to the power of a	study.				
(a) increase it		(b) decrease	it	(c) have no effect				
35) Decreasing the dif	fference worth	detecting in a st	tudy will do this	to the power of a study.				
(a) increase it		(b) decrease	it	(c) have no effect				
36) [M/C] The box lab	eled "36" in th	is table represer	nts a:					
(a) type I error	(b) t	ype II error	(c) correct d	lecision				
		H_0 true	H_1 tru	ie				
	Retain H_0		"36"	,				
	Reject H_0							
37) Does a confidence	for a mean dif	ference based or	n paired samples	s try to locate \bar{x}_d or μ_d ?				

The remaining	question	s address	tnese r	nine pair	ea airrei	rence dat	ta points	("DELI	As")
	7	8	-4	-2	3	4	4	6	3

- 38) Plot these data points (in your blue book) as a stemplot with a stem that looks something like this:
 - |-0| |-0| | 0| | 0| ×10

m1

- 39) Does the sample distribution show any clear departures from Normality? (Yes or no).
- 40) What is the value of t when calculating a 95% confidence interval for μ ? Here's output for this problem from SPSS:

One-Sample Statistics

	N	Mean	Std. Deviation	Std. Error Mean
VAR00001	9	3.2222	3.96162	1.32054

One-Sample Test

	Test Value = 0					
					95% Confidence	
					Interval of the	
				Mean	Difference	
	t	df	Sig. (2-tailed)	Difference	Lower	Upper
VAR00001	2.440	8	.041	3.22222	.1771	6.2674

- 41) What is the null hypothesis addressed by the above *t* statistic?
- 42) Draw a t density curve in your blue book. Place the t_{stat} on your curve and shade the area under the curve corresponding to the two-sided P value.
- 43) The evidence against the null hypothesis for this problem is
 - a) insignificant
 - b) marginally significant
 - c) significant
 - d) highly significant
- 44) Report the confidence interval for μ_d with 2 decimal place accuracy.