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Course Introduction
Lecture slides:

https://www.sjsu.edu/faculty/guangliang.chen/ICSA2023lecture.pdf

Matlab scripts:

1. Plain spectral clustering:
https://www.sjsu.edu/faculty/guangliang.chen/ICSA2023scripts.zip

2. SSC-cosine:
https://github.com/glsjsu/rprr2018
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The data clustering problem

Assume a set of objects (e.g., x1, . . . ,xn ∈ Rn) and a similarity measure.
We would like to divide the data set into k disjoint subsets (called clusters)
such that within every cluster objects are “similar” (at least to their near
neighbors), and between clusters objects are “dissimilar”.
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Remark. Clustering is an unsuper-
vised machine learning task, often
called learning without a teacher.

In contrast, classification is super-
vised (learning with a teacher).
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Applications of clustering

Clustering is the process of discover-
ing groups and patterns in data, a
very common data mining task.

Examples of its application include

• Document grouping

• Customer segmentation

• Social network partitioning

• Image segmentation
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Some necessary components of clustering

• Objects and their attributes

• Number of clusters

• Similarity measure

• Algorithm

• Evaluation criterion

• Interpretation of results
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Clustering methods

• Hierarchical clustering

• Centroid-based clustering (e.g., k-means)

• Distribution-based clustering (e.g., mixture of Gaussians)

• Geometry-based clustering (e.g., subspace clustering)

• Spectral clustering (for separating non-intersecting manifolds)
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What is spectral clustering?

A family of clustering algorithms that utilize the spectral decomposition
of a similarity matrix constructed on the given data x1, . . . ,xn ∈ Rd:

W = (wij) ∈ Rn×n, wij =

s(xi,xj), if i 6= j

0, if i = j.

Here, s(·, ·) is a similarity function, such as

• a 0/1-valued indicator function,

• the Gaussian radial basis function (RBF), and

• the cosine similarity.
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Advantages of spectral clustering

• Simple and easy to implement (a few lines of matrix operations)

• Flexible and accurate (can especially handle nonconvex clusters well)

• Rich theory (manifold learning, graph cut, random walk, matrix
perturbation theory)

• Implementation through neural networks
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Spectral clustering as a graph cut problem

Given data x1, . . . ,xn ∈ Rd, we can represent it by an (undirected)
similarity graph G = (V,E).

Each vertex vi ∈ V represents a data
point xi.

“Nearby” vertices vi, vj ∈ V are
connected by an edge, denoted as
eij ∈ E.

Clustering can now be reformulated
as a graph cut problem.
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How to construct similarity graphs from Euclidean data

• The ε-neighborhood graph: connect with weight 1 any two points
xi,xj whose distance is less than ε

• The rNN graph: connect with weight 1 any two points xi,xj if
one is among the r nearest neighbors of the other;
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ǫ-ball graph rNN graph (r = 3)
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• The fully connected graph: connect any two points xi,xj with
weight according to some similarity function s:

wij = s(xi,xj), for all i, j = 1, . . . , n

For example,

– Gaussian weights: s(xi,xj) = e−
‖xi−xj‖

2

2σ2 , where σ > 0 is a
scale parameter whose value is fixed.

– Cosine weights: s(xi,xj) = xi
‖xi‖ ·

xj
‖xj‖ , which is often used

in documents clustering

It is also possible to mix up the different kinds of weights.
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Course overview
The short course aims to introduce spectral clustering as a modern approach
to clustering (in the setting of large data):

• Part 1: Spectral graph theory

• Part 2: Spectral clustering theory and algorithms

• Part 3: Scalability and applications

• Appendix: Advanced linear algebra

It also has a programming component (Matlab scripts are provided).
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Part 1: Spectral Graph Theory
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Some graph terminology

Let G = (V,E,W) be an undi-
rected, weighted graph.

The degree of a vertex i ∈ V is
defined as

di =
n∑
j=1

wij .

It measures the connectivity of the
vertex in the graph.
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The degrees of all vertices of G can be used to form

• a degree vector:

d = (d1, . . . , dn)T ∈ Rn,

• a diagonal degree matrix:

D = diag(d) ∈ Rn×n.

It is obvious that
d = W · 1.
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For example, for the undirected graph with the following weight matrix

W =


0 1 2 0 0
1 0 0 1 4
2 0 0 1 2
0 1 1 0 1
0 4 2 1 0


the degree vector and matrix are respectively

d = W1 =


3
6
5
3
7

 , D = diag(d) =


3

6
5

3
7


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We define the indicator vector 1A associated to a subset of nodes A ⊆ V
by

1A = (a1, . . . , an)T , ai = 1 (if i ∈ A) and ai = 0 (if i /∈ A)

For example, for the subset of nodes A = {1, 2, 3, 4} below (in blue),
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the indicator vector is 1A = (1, 1, 1, 1, 0)T .

Guangliang Chen | San José State University −→ Hope College 20/186



On the memory and speed scalability of spectral clustering

A subgraph of a given graph G = (V,E,W), induced by a subset of
vertices A ⊆ V , is another graph, GA = (A,EA,WA)

• whose vertex set is A,

• whose edge set EA contains all of the edges of G that have both
endpoints in A, i.e.,

EA = {{i, j} ∈ E | i, j ∈ A}

• and whose weight matrix is the restriction of W to A:

WA = (wij)i,j∈A ∈ R|A|×|A|.
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For example, the subset of nodes A = {1, 2, 3, 4} induces the following
subgraph (in blue), with weight matrix:
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1 WA =


0 1 2 0
1 0 0 1
2 0 0 1
0 1 1 0



Guangliang Chen | San José State University −→ Hope College 22/186



On the memory and speed scalability of spectral clustering

There are two ways to measure the “size” of a subgraph A ⊂ V :

|A| = #vertices in A;

Vol(A) =
∑
i∈A

di.

The former simply counts the number of vertices in A while the latter
measures how strongly the vertices in A are connected to all vertices of G.

For example, for the subgraph (in blue),

|A| = 4,
Vol(A) = d1 + d2 + d3 + d4 = 3 + 6 + 5 + 3 = 17.
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Clearly,
Vol(V ) = Vol(A) + Vol(Ā).

Additionally, the total volume of the entire graph G is equal to the overall
sum of the entries of the weight matrix W:

Vol(V ) =
n∑
i=1

di =
n∑
i=1

 n∑
j=1

wij

 =
n∑
i=1

n∑
j=1

wij = 1TW1.
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A subgraph A ⊂ V is connected if any two vertices in A can be joined
by a path such that all intermediate points also lie in A.
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The subgraph A is called a connected component of V if it is connected
and if there are no connections between vertices in A and Ā.
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For example, the following graph has one connected component and is
said to be connected:
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In contrast, the following graph has two connected components (and thus
is not connected):
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The nonempty (vertex) sets A1, . . . , Ak form a partition of the graph if
Ai ∩Aj = ∅ for all i 6= j and A1 ∪ · · · ∪Ak = V .

For example, A = {1, 2, 3} and B = {4, 5} form a partition of the following
graph
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For any two subsets A,B ⊂ V (not necessarily disjoint), we define

W (A,B) =
∑
i∈A

∑
j∈B

wij = 1TA W 1B.
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When B = Ā, the quantity W (A,B) is called a cut:

Cut(A, Ā) = W (A, Ā) =
∑
i∈A

∑
j∈Ā

wij

Another special case is when B = V ,

W (A, V ) =
∑
i∈A

n∑
j=1

wij =
∑
i∈A

di = Vol(A).
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A graph G = (V,E,W) is called a bipartite graph if there is a partition
of the nodes V = A∪B such that there is no edge inside each of the two
parts A and B, i.e.,

wij = 0, i, j ∈ A, and wij = 0, i, j ∈ B.

In other words, all the edges in E are between A and B.
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Functions on graphs

A (univariate) function over the graph G is a map from the vertex set of
G = (V,E) to real numbers, i.e.,

f : V 7−→ R

For a finite graph with n = |V | nodes, we can alternatively use a vector
f ∈ Rn to represent a function over the graph, that is

f = (fi) ∈ Rn, fi = f(vi), 1 ≤ i ≤ n.
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For any subset A ⊆ V , the associated indicator vector 1A is a function
over the graph whose values are 1 over A and 0 over Ā.
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For this reason, we also refer to 1A as an indicator function.
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A probabilistic model on weighted graphs
We can define a stochastic process on any undirected, weighted graph
G = (V,E,W). Suppose that there is no isolated vertex.

Imagine that a person initially stands on one of the vertices of G, say node
i, and will move, one step a time, from vertex to vertex along the existing
edges of the graph.
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To choose which edge (incident on node i) to move along, the person will
follow the following probabilities at node i:

pij = wij
di
, j ∈ V

This is a discrete distribution over the vertex set V because

pij ≥ 0, j ∈ V

and ∑
j∈V

pij = 1
di

∑
j∈V

wij = 1
di
· di = 1.
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Let Xk for each k ≥ 0 denote the node where the person is at time k.

Then {Xk}k≥0 is a Markov chain with state space S = V because
the process is discrete in time and the transitions do not depend on the
previously visited nodes but only on the current location (by following the
local distribution).

We say that the Markov chain process is induced by the weighted graph.
The process is called a random walk because of the above interpretation.

The set of all transition probabilities form a transition matrix

P = (pij) ∈ Rn×n, n = |V |

Guangliang Chen | San José State University −→ Hope College 35/186



On the memory and speed scalability of spectral clustering

In matrix notation, we have

P = D−1W.

The transition matrix P has the following properties:

• P is nonnegative (pij ≥ 0 for all i, j ∈ V );

• P is row-stochastic (i.e.,
∑
j∈V pij = 1 for each i ∈ V ):

P1 =
(
D−1W

)
1 = D−1 (W1) = D−1d = 1.

where the last step is due to D = diag(d).
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For example, the Markov chain associated to the following undirected
graph has a state space of S = {1, 2, 3, 4, 5} and the transition matrix is

W =



0 1 2 0 0

1 0 0 1 4

2 0 0 1 2

0 1 1 0 1

0 4 2 1 0


−→ P =



0 1
3

2
3 0 0

1
6 0 0 1

6
4
6

2
5 0 0 1

5
2
5

0 1
3

1
3 0 1

3

0 4
7

2
7

1
7 0


It is obvious that this transition matrix P ∈ R5×5 is nonnegative and
row-stochastic.
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We also mention a symmetric normalized version of the weight matrix W:

W̃ = D−1/2WD−1/2 ∈ Rn×n.

This matrix has the same size with P, but is symmetric (note that P =
D−1W is not symmetric). However, the two matrices are similar, because

D−1W︸ ︷︷ ︸
P

= D−1/2︸ ︷︷ ︸
inverse

·D−1/2WD−1/2︸ ︷︷ ︸
W̃

· D1/2︸ ︷︷ ︸
invertible

.

This implies that the two matrices P,W̃ have the same eigenvalues, which
are all real (however, they do not necessarily have the same eigenvectors).
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In fact, a vector v ∈ Rn is an eigenvector of P corresponding to eigenvalue
λ if and only if the vector D1/2v is an eigenvector of W̃ corresponding to
the same eigenvalue λ:

D−1W︸ ︷︷ ︸
P

·v = λv ⇐⇒ D−1/2WD−1/2︸ ︷︷ ︸
W̃

·D1/2v = λ ·D1/2v.

Because of the symmetry of W̃ and the fact that it is similar to P, the
matrix W̃ is often used to mathematically study the properties of P or
numerically compute the eigenvalues and eigenvectors of P.
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Graph Laplacians
Let G = (V,E) be an undirected, weighted graph with weight matrix W
and degree matrix D = diag(W1).

Def 0.1. The Laplacian matrix of the graph, or in short, the graph
Laplacian is defined as

L = D−W.

Remark. The graph Laplacian L is a symmetric matrix, with all the rows
(and columns) summing to 0:

L1 = (D−W)1 = D1−W1 = d− d = 0.

This implies that L has a eigenvalue 0 with eigenvector 1.

Guangliang Chen | San José State University −→ Hope College 40/186



On the memory and speed scalability of spectral clustering

Example 0.1.

b

b

b b b0.8
0.8

0.8

0.1 0.9

v1

v2

v3 v4 v5

L =


1.6 −0.8 −0.8
−0.8 1.6 −0.8
−0.8 −0.8 1.7 −0.1

−0.1 1 −0.9
−0.9 0.9


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The graph Laplacian has many nice properties.

Theorem 0.1. Suppose G = (V,E,W) is an undirected, weighted graph
with Laplacian matrix L = D−W. Then

• For every vector f ∈ Rn we have

fTLf = 1
2

n∑
i=1

n∑
j=1

wij(fi − fj)2.

Therefore, L is positive semidefinite and accordingly, its eigenvalues
are all nonnegative: 0 = λ1 ≤ λ2 ≤ · · · ≤ λn.
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• The algebraic multiplicity of the eigenvalue 0 equals the number of
connected components in the graph. Furthermore, the corresponding
eigenspace is

E(0) = span{1A1 , . . . ,1Ak} ⊂ Rn

where A1, . . . , Ak are all the connected components of G.
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Proof. The identity is verified as follows:
n∑

i=1

n∑
j=1

wij(fi − fj)2 =
n∑

i=1

n∑
j=1

wij

(
f2

i + f2
j − 2fifj

)
=

n∑
i=1

n∑
j=1

wijf
2
i +

n∑
i=1

n∑
j=1

wijf
2
j − 2

n∑
i=1

n∑
j=1

wijfifj

=
n∑

i=1

 n∑
j=1

wij

 f2
i +

n∑
j=1

(
n∑

i=1
wij

)
f2

j − 2
n∑

i=1

n∑
j=1

wijfifj

=
n∑

i=1
dif

2
i +

n∑
j=1

djf
2
j − 2

n∑
i=1

n∑
j=1

wijfifj

= 2fT Df − 2fT Wf
= 2fT Lf .
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Since L ∈ Sn(R), the eigenvalue λ1 = 0 must have identical algebraic and
geometric multiplicities, i.e., a1 = g1. To find the geometric multiplicity
g1, let v 6= 0 ∈ Rn be an arbitrary eigenvector corresponding to the
eigenvalue 0, i.e., Lv = 0. Then

0 = vT Lv︸︷︷︸
0

= 1
2

n∑
i=1

n∑
j=1

wij(vi − vj)2.

Since every term in the sum is nonnegative, we obtain that

wij(vi − vj)2 = 0, for all i 6= j
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For two adjacent nodes i, j such that wij 6= 0, we must have vi = vj .
This shows that v is constant over each connected component. That is,

v =
k∑
i=1

ci1Ai

where c1, . . . , ck ∈ R are free variables. This shows that the eigenspace of
eigenvalue 0 is

E(0) = span{1A1 , . . . ,1Ak} ⊂ Rn

Since 1A1 , . . . ,1Ak ∈ Rn are orthogonal vectors, we conclude that its
geometric (and thus also algebraic) multiplicity is

g1 = dim(E(0)) = k.
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Example 0.2.

b

b

b b b0.8
0.8

0.8

0.1 0.9

v1

v2

v3 v4 v5

The Laplacian matrix of the above graph has eigenvalues

λ1 = 0, λ2 = 0.0788, λ3 = 1.8465, λ4 = 2.4000, λ5 = 2.4747.

The algebraic multiplicity of the zero eigenvalue is 1, which coincides with
the number of connected components in the graph.
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Example 0.3. Consider the following modified graph
b

b b b b

0.8 0.8

0.8

0.9

v1

v2

v3 v4 v5 W =


0 .8 .8 0 0
.8 .0 .8 0 0
.8 .8 0 0 0
0 0 0 0 .9
0 0 0 .9 0


It can be shown that

det(λI− L) = λ(λ− 2.4)2 · λ(λ− 1.8).

Thus, the unnormalized graph Laplacian has a repeated eigenvalue 0, with
multiplicity 2 (the number of connected components).
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Normalized graph Laplacians
In many cases, we need to deal with a normalized graph Laplacian. We
present the definition below.

Suppose G = (V,E,W) is an undirected, weighted graph with a positive
definite degree matrix D and a Laplacian matrix L = D−W.

Let

L̃rw = D−1L, and L̃sym = D−1/2LD−1/2

They are called the random-walk normalized Laplacian and symmetric
normalized Laplacian, respectively.
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We make some comments on the two normalized graph Laplacians.

First, we can write

L̃rw = D−1 (D−W)︸ ︷︷ ︸
L

= I−D−1W︸ ︷︷ ︸
P

= I−P

L̃sym = D−1/2 (D−W)︸ ︷︷ ︸
L

D−1/2 = I−D−1/2WD−1/2︸ ︷︷ ︸
W̃

= I− W̃

This implies that that each pair of matrices, (L̃rw,P) or (L̃sym,W̃), have
the same eigenvectors but reversed eigenvalues:

(I−P)︸ ︷︷ ︸
L̃rw

v = λv ⇐⇒ Pv = (1− λ)v.
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Second, L̃sym is symmetric while L̃rw is not, but they are similar:

D−1L︸ ︷︷ ︸
L̃rw

= D−1/2︸ ︷︷ ︸
inverse

·D−1/2LD−1/2︸ ︷︷ ︸
L̃sym

· D1/2︸ ︷︷ ︸
invertible

.

Thus, both matrices have the same (real) eigenvalues but not the same
eigenvectors.

In fact, a vector v ∈ Rn is an eigenvector of L̃rw corresponding to
eigenvalue λ if and only if the vector D1/2v is an eigenvector of L̃sym
corresponding to the same eigenvalue λ:

D−1L︸ ︷︷ ︸
L̃rw

·v = λv ⇐⇒ D−1/2LD−1/2︸ ︷︷ ︸
L̃sym

·D1/2v = λ ·D1/2v.
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The normalized graph Laplacians have similar properties with the unnor-
malized Laplacian.

Theorem 0.2. For any undirected, weighted graph G = (V,E,W),

1. The row sums of L̃rw are 0, i.e.,

L̃rw1 =
(
D−1L

)
1 = D−1 (L1) = D−10 = 0.

This implies that L̃rw has an eigenvalue 0 with corresponding eigen-
vector 1 and the symmetric normalized graph Laplacian L̃sym has
an eigenvalue 0 with corresponding eigenvector D1/21.
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2. For any vector f ∈ Rn,

fT L̃symf = 1
2

n∑
i=1

n∑
j=1

wij

(
fi√
di
− fj√

dj

)2

.

This implies that L̃sym is positive semidefinite and accordingly, its
eigenvalues are all nonnegative: 0 = λ1 ≤ λ2 ≤ · · · ≤ λn.

3. The algebraic multiplicity of the eigenvalue 0 of L̃rw and L̃sym is
equal to the number of connected components of the graph.

Guangliang Chen | San José State University −→ Hope College 53/186



On the memory and speed scalability of spectral clustering

Proof. Using D−1/2f =
(
fi√
di

)
in place of f in the identity fTLf , we have

fT L̃symf =
(
fTD−1/2

)
L
(
D−1/2f

)
= 1

2

n∑
i=1

n∑
j=1

wij

(
fi√
di
− fj√

dj

)2

Let v 6= 0 ∈ Rn be an arbitrary eigenvector of L̃sym corresponding to
the eigenvalue 0, i.e., L̃symv = 0. Using the definition of the symmetric
normalized Laplacian, we have

D−1/2LD−1/2v = 0 −→ L
(
D−1/2v

)
= 0

This shows that D−1/2v must be an eigenvector of L corresponding to
the eigenvalue 0.

Guangliang Chen | San José State University −→ Hope College 54/186



On the memory and speed scalability of spectral clustering

Therefore, we obtain that

D−1/2v =
k∑
i=1

ci 1Ai , −→ v =
k∑
i=1

ci D1/21Ai

where A1, . . . , Ak represent all the connected components of G and
c1, . . . , ck ∈ R are arbitrary constants.

This shows that the eigenspace of L̃sym corresponding to eigenvalue 0 is

E(0) = span{D1/21A1 , . . . ,D1/21Ak} ⊂ Rn

Since D1/21A1 , . . . ,D1/21Ak ∈ Rn are linearly independent vectors, we
conclude that the geometric (and algebraic) multiplicity of eigenvalue 0 is

g1 = dim(E(0)) = k.
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Example 0.4. Consider the graph that has two connected components:
b

b b b b

0.8 0.8

0.8

0.9

v1

v2

v3 v4 v5

By direct calculation, the random walk graph Laplacian is

L̃rw = D−1L =


1 −1

2 −1
2

−1
2 1 −1

2
−1

2 −1
2 1

1 −1
−1 1


with eigenvalues λ1 = λ2 = 0, λ3 = λ4 = 1.5, λ5 = 2.
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Now, for the connected graph that has an extra thin edge (w34 = 0.1),
the random walk graph Laplacian is

L̃rw =


1 −1

2 −1
2

−1
2 1 −1

2
− 8

17 − 8
17 1 − 1

17
− 1

10 1 − 9
10

−1 1


Using software, the eigenvalues of the graph Laplacian are 0 < 0.0693 <
1.4773 < 1.5000 < 1.9534. We see that the eigenvalue 0 now has a
multiplicity of 1. However, the second eigenvalue is quite small, which is
due to the weak link added between the two parts.

Guangliang Chen | San José State University −→ Hope College 57/186



On the memory and speed scalability of spectral clustering

In the last two examples, the eigenvalues of the normalized Laplacians are
all in the range [0, 2]. This in fact holds true in general, as stated in the
following theorem.

Theorem 0.3. Let G = (V,E,W) be an undirected, weighted, connected
graph with n = |V |. Denote the eigenvalues of L̃sym and L̃rw by

0 = λ1 < λ2 ≤ · · · ≤ λn.

Then the following are true:

• The sum of the eigenvalues is n:
n∑
i=2

λi = n.
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This implies that
λ2 ≤

n

n− 1 ≤ λn.

The equalities simultaneously hold true, i.e.,

λ2 = · · · = λn = n

n− 1 ,

if and only if G is a fully connected graph with equal weights.

• If G is not a fully connected graph, i.e., there exist a pair of distinct
nodes k, ` such that wk` = 0, we must have λ2 ≤ 1.

• λn ≤ 2, with λn = 2 if and only if G is bipartite.
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Example 0.5. Consider the following two graphs:

b

b

b

b

b

b

1 1

1

1 1

The first is a fully connected graph with equal weights. By the above
theorem, the eigenvalues of the normalized graph Laplacians are

λ1 = 0, λ2 = λ3 = 3
2 .
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The second is a bipartite graph. Thus,

λ1 = 0, λ3 = 2, and λ2 ≤ 1.

The exact value is λ2 = 1, calculated as follows:

W =

0 1 1
1 0 0
1 0 0

 −→ L̃rw =

 1 −1
2 −1

2
−1 1 0
−1 0 1



−→ det(L̃rw − λI) = −λ(1− λ)(2− λ).
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Remark. Let G = (V,E,W) be an undirected, weighted graph. Below
is what we know so far about the second smallest eigenvalue λ2 of the
normalized Laplacians:

• If G has more than one connected component, λ2 = 0;

• If G is connected but not fully connected, 0 < λ2 ≤ 1;

• If G is fully connected with equal weights, λ2 = n
n−1 (maximum

possible value).

It is a measure of the algebraic connectivity of G as a whole, and is called
the Fiedler value of the graph (the corresponding eigenvector is called
the Fiedler eigenvector of the graph).
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Remark. Another measure of the algebraic connectivity of a weighted graph
G = (V,E,W) is the conductance of the graph, also called Cheeger’s
constant:

hG = min
A⊂V

hG(A) = min
A⊂V

Cut(A, Ā)
min(Vol(A),Vol(Ā))

.

The following theorem indicates that it is closely related to the second
smallest eigenvalue λ2 of the normalized graph Laplacians of G.

Theorem 0.4 (Cheeger’s Inequality).

h2
G

2 ≤ λ2 ≤ 2hG
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Interpretation of the graph Laplacians

Let f be a function defined on a graph G = (V,E,W).

• L = D−W: net flow operator

(Lf)i = difi −
∑
j∈V

wijfj =
∑
j∈V

wij(fi − fj), i ∈ V

b

b

b

b

b

node i

wij

node j
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• L̃rw = D−1L = I−P: divergence operator(
L̃rwf

)
i

= fi −
∑
j∈V

pijfj = 1
di

∑
j∈V

wij(fi − fj), i ∈ V

b

b

b

b

b

node i

wij

node j
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• Sγ := I− γL̃rw = (1− γ)I + γP: Laplacian smoothing operator,
where 0 < γ < 1 controls the strength of smoothing:

Sγf = f − γL̃rwf = (1− γ)f + γPf

It can be used to construct graph convolutional nets:

F(i) = σ
(
SγF(i−1)W(i)

)
, i ≥ 1

where

– F(i−1): feature matrix of the graph nodes at layer i− 1

– W(i): matrix of weights between layers i− 1 and i

– σ: activation function
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Part 2: Spectral Clustering
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SC via a graph cut point of view

W (as a weight matrix) defines a
weighted graph on the given data.

b

b b
b

b
b

b b b
b

b

b

b b

b
b

b

b
b

b

b

b

b b

b
b

b
b b

b
b

b

b

b b

b

b

bb

b

b
b

b
b

b
b

b
b

b

b
b

b

bb

b b
bbb

b

b

b

b
bb

b
b

bb
b

b

b
b

bb

b
b

b

b

Therefore, clustering = finding an
optimal cut (under some criterion).

Some graph terminology:
– Degree matrix: D = diag(W1)
with Dii =

∑
j wij .

– Graph Laplacian: L = D−W
and its normalized version:

Lrw = D−1L = I− D−1W︸ ︷︷ ︸
P (row stochastic)

Remark. P defines a random walk
on the graph.
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The Normalized Cut (NCut) algorithm
Shi and Malik (2001) first considered the case of k = 2 clusters and
proposed to perform spectral clustering by solving:

min
A∪B=V
A∩B=∅

Ncut(A,B) = cut(A,B)
( 1

Vol(A) + 1
Vol(B)

)

Remark. To minimize the above normalized cut,

• cut(A,B) needs to be small: little loss of edge weights

• both Vol(A) and Vol(B) need to be large: balanced clusters
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Remark. Other measures of the quality of a cut include

• Cheeger constant

CheegerCut(A,B) = cut(A,B)
min(Vol(A),Vol(B))

• Min-max cut

MinMaxCut(A,B) = cut(A,B)
( 1
W (A,A) + 1

W (B,B)

)

• Ratio cut

RatioCut(A,B) = cut(A,B)
( 1
|A|

+ 1
|B|

)
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It turns out that the normalized cut can be conveniently expressed in terms
of the graph Laplacian matrix.

Theorem 0.5. Given a similarity graph G = {V,E,W} with n = |V | and
a partition A ∪B = V , we have

NCut(A,B) = xTLx
xTDx ,

where x is an indicator vector for the bipartition:

x = (xi) ∈ Rn, xi =


1

Vol(A) , i ∈ A
−1

Vol(B) , i ∈ B
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Proof. To simplify notation, let

a = Vol(A), b = Vol(B),

so that x = (xi) ∈ Rn with

xi =


1
a , i ∈ A
−1
b , i ∈ B

It can be regarded as an indicator
vector for the bipartition:

x = 1
a
1A −

1
b
1B

b

b b b b

0.8 0.8

0.8 0.1

0.9

A B

a = Vol(A) b = Vol(B)

1
a

−1
b

i ∈ A

i ∈ B

x

b b b

b b
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We have

xTLx = 1
2
∑
i

∑
j

wij(xi − xj)2

=
∑
i∈A

∑
j∈B

wij

(1
a

+ 1
b

)2

= Cut(A,B)
(1
a

+ 1
b

)2

xTDx =
∑
i

dix
2
i

=
∑
i∈A

1
a2di +

∑
j∈B

1
b2
di

= 1
a2 Vol(A) + 1

b2
Vol(B) = 1

a
+ 1
b
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It follows that

xTLx
xTDx = Cut(A,B)

(1
a

+ 1
b

)
= NCut(A,B)

Remark. The vector x also satisfies a hidden constraint

xTD1 =
n∑
i=1

xidi

= 1
a

∑
i∈A

di −
1
b

∑
i∈B

di

= 1
a

Vol(A)− 1
b

Vol(B)

= 0.
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Therefore, minimizing the NCut over all bipartitions of the graph is equiv-
alent to minimizing the generalized Rayleigh quotient over all indicator
vectors x:

min
A∪B=V
A∩B=∅

NCut(A,B) ⇐⇒ min
x is binary
xTD1=0

xTLx
xTDx

This problem is discrete (and hard to solve), and in order to solve it
efficiently, we relax it by eliminating the binary requirement:

min
x∈Rn

xTD1=0

xTLx
xTDx .

The vectors x in the new, expanded domain are expected to be a smoothed-
out version of the discrete x and still contain the cluster information.
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Remark. The relaxed NCut problem is equivalent to a locality-preserving
manifold learning algorithm, called Laplacian Eigenmaps:

min
x∈Rn

xTLx = 1
2
∑
i

∑
j

wij(xi − xj)2

subject to
xTD1 = 0, xTDx = 1

To minimize the objective function, any two data points that are close
in original space (wij ≈ 1) must remain close in the embedding domain
(xi ≈ xj).

The first constraint 0 = xTD1 =
∑
dixi removes translation invariance,

while the second (1 = xTDx =
∑
dix

2
i ) fixes the scale of embedding.
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The relaxed NCut problem is a restricted generalized Rayleigh quotient
problem:

• Without the constraint xTD1 = 0, the minimizer would be the
smallest generalized eigenvector of (L,D), i.e., 1:

L1 = 0 ·D1

and the minimum value is λ1 = 0.

• The constraint xTD1 = 0 effectively excludes the trivial solution
and thus the new minimizer would be the second smallest generalized
eigenvector of (L,D):

L x = λ2Dx (λ2 > 0)
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In sum, we need to find the second smallest generalized eigenvector of
(L,D) and use it to partition the data into two clusters .

We already know that it coincides with the second smallest eigenvector of
L̃rw = D−1L.

In fact, it is also the second largest eigenvector of P = D−1W, because
λ is an eigenvalue of L̃rw if and only if 1− λ is an eigenvalue of P with
the same corresponding eigenvector:

(I−P)︸ ︷︷ ︸
L̃rw

x = λx ⇐⇒ Px = (1− λ)x

We will use the matrix P to efficiently compute x.
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Remark. The RatioCut criterion leads to the following relaxed problem:

min
x∈Rn:
xT 1=0

xTLx
xTx .

The solution is obviously given by the second smallest eigenvector of the
unnormalized graph Laplacian L:

Lx = λ2x.

The resulting algorithm is equivalent to that of Ncut when the clusters
have comparable sizes and is worse otherwise.

Guangliang Chen | San José State University −→ Hope College 79/186



On the memory and speed scalability of spectral clustering

Algorithm 1 Normalized Cut for 2-way clustering (by Shi and Malik)
Input: Data X = {x1, . . . ,xn} ⊂ Rd, and scale parameter σ
Output: A partition of X = C1 ∪ C2
Steps:
1: Calculate the weight matrix

W = (wij) ∈ Rn×n, wij = e−
‖xi−xj‖

2

2σ2

1: Compute the degree matrix D = diag(W1), and use it to normalize
W to get P = D−1W.

2: Find the second largest eigenvector v2 of P.
3: Assign labels based on the sign of the coordinates of v2.
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How to choose σ

The parameter σ can be set directly as the average distance of the data
points to their respective rNNs in the data:

σ = 1
n

n∑
i=1
‖xi − x(rnn)

i ‖.

For fast speed, use a subset of 30 to 50 randomly selected points to
calculate σ. Additionally, r = O(log(n)) and typically, r is 6 to 10.
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Computer demonstration

(For NCut, v1 = 1 is discarded because it is a trivial eigenvector of P)
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What if k > 2?

Use the subsequent eigenvectors (besides v2) of P:

V = [v2,v3, . . . ,vk] ∈ Rn×(k−1)

since they represent suboptimal 2-way partitions.

Now regard the rows of V as an embedding of the original data in X,

X(i, :) ∈ Rd −→ V(i, :) ∈ Rk−1, i = 1, . . . , n

and apply k-means to group the row vectors of V into k clusters.
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Algorithm 2 Normalized Cut (by Shi and Malik)
Input: Data x1, . . . ,xn ∈ Rd, #clusters k, scale parameter σ
Output: A partition C1, . . . , Ck

1: Construct a weighted graph by assigning weights

W = (wij), wij = e−
‖xi−xj‖

2

2σ2

2: Find the degree matrix D = diag(W1) and use it to normalize W to
get P = D−1W.

3: Find the 2nd to kth largest eigenvectors V = [v2 . . .vk] of P.
4: Apply k-means to group the rows of V into k clusters.
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Computer demonstration

-4 -2 0 2 4

-4

-2

0

2

4

clusters found by kmeans in embedding space

-0.08 -0.06 -0.04 -0.02 0 0.02

v
2

-0.06

-0.04

-0.02

0

0.02

v 3

new coordinates found by NCut

(For NCut, v1 = 1 is discarded because it is a trivial eigenvector of P)
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The random walk perspective

The matrix

P = D−1W

is row-stochastic and thus defines a
random walk on the graph.

It can be shown that if the graph
is connected but non-bipartite, and
the random walk has converged to
the stationary distribution,

Ncut(A, Ā) = P (Ā | A)+P (A | Ā).
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If the random walk is moved forward
(for a small number of t steps), then
it can generate diffusion coordinates:
U(t) = UΛt.
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The matrix perturbation perspective
Ng, Jordan and Weiss (2001) proposed a spectral clustering algorithm
from a matrix perturbation point of view.

Their algorithm uses the bottom eigenvectors of the symmetric graph
Laplacian

Lsym = I−D−
1
2 WD−

1
2 = I− W̃,

which are the top eigenvectors of the W̃ matrix, to embed the data for
clustering.

The matrix W̃ can be regarded as a perturbed version of a block-diagonal
matrix with each block corresponding to a distinct cluster.
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Algorithm 3 Spectral clustering by Ng, Jordan and Weiss (2001)
Input: Data x1, . . . ,xn ∈ Rd, #clusters k, and scale parameter σ
Output: Clusters C1, . . . , Ck

1: Construct the weight matrix W = (wij) by

wij = e−
‖xi−xj‖

2

2σ2 , i 6= j (0 otherwise)

2: Compute D = diag(W1) and use it to obtain W̃ = D−
1
2 WD−

1
2

3: Find the top k eigenvectors of W̃ to form an eigenvectors matrix
U = [u1 . . .uk] ∈ Rn×k

4: Renormalize the rows of U to have unit length and apply k-means to
group them into k clusters
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Application to image segmentation

Given an image A ∈ Rm×n, the goal
of image segmentation is to group
pixels based on the content:

• Input data: mn pixels;

• Clusters tend to be local;

• Pixels are considered similar
only if they are close in both
distance and intensity value.

b

b
b

b
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Image segmentation by spectral clustering

In principle, one only needs to compute a similarity matrix between all
pixels and feed it to spectral clustering algorithms such as Ncut and NJW:

W = (w(i,j),(i′,j′)) ∈ Rmn×mn,

where

w(i,j),(i′,j′) = exp
(
−(i− i′)2 + (j − j′)2

2σ2
P

)
exp

(
−

(aij − ai′j′)2

2σ2
I

)

However, computationally the large size of W may be an issue.
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One way to mitigate the computational burden is to restrict the calculation
of w(i,j),(i′,j′), for each fixed pixel (i, j), to only nearby pixels (i′, j′).

This will yield a sparse W which is computationally much more efficient.

b
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Part 3: Scalability of spectral clustering

• Speed scalability

• Memory scalability
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Computational challenges
Spectral clustering has achieved superior results in many applications (such
as image segmentation, documents clustering, social network partitioning),
but requires significant computational power due to the matrix W ∈ Rn×n:

• Extensive memory requirement: O(n2)

• High computational cost:

– Construction of W: O(n2d)

– Spectral decomposition of W: O(n3)

Consequently, there has been an urgent need to develop fast, approximate
spectral clustering algorithms that are scalable to large data.
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Addressing the speed scalability (previous work)
Nyström approximation methods: Use a subset of rows and columns of W to
estimate the eigenvectors of the full matrix.

Column sampling methods: Use only a subset of the columns (but keep all
rows) to estimate the eigenvectors of W, e.g., cSPEC (Wang et al., PAKDD’09)

Data reduction methods: Reduce input data to a small set of data represen-
tatives and perform spectral clustering directly on the reduced set, e.g., KASP
(Yan, Huang, and Jordan, KDD’09)

Sparse representation methods: Find a dictionary to sparsely represent the
given data, and perform spectral clustering with the sparse feature vectors, e.g.,
LSC (Cai and Chen, IEEE Trans. Cybernetics, 2015)
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Our two-step treatment
1. Scalable spectral clustering with cosine similarity:

W = XXT − I (suppose X ∈ Rn×d has L2-normalized rows)

We assume “some sort of low dimensional structure” for the data
matrix X (e.g., documents, or small images) and show in those cases
that spectral clustering can be performed based on “very efficient
operations” on X.

2. Scalable spectral clustering with general similarity:

We present a landmark-based technique to transform this problem
to the case of cosine similarity.
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Scalable spectral clustering with cosine similarity
We assume

• Data set X ∈ Rn×d with L2-normalized rows

• X is row-sparse (s� d), or of a moderate dimension (d� n):

– Documents data

– Small images (e.g., MNIST handwritten digits: 70, 000× 784)

– Data obtained through PCA

• Cosine similarity is appropriate: W = XXT − I
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We show that:

One can perform the following three kinds of spectral clustering

NJW (Ũ), NCut (U = D−
1
2 Ũ), and DM(t) (U(t) = D−

1
2 ŨΛt),

using only the following efficient operations on the data matrix X ∈ Rn×d:

• Elementwise operations: O(ns) or O(nd) complexity

• Matrix-vector multiplication: O(ns) or O(nd) complexity

• Rank-k SVD: O(nsk) or O(ndk) complexity
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The math
We focus on the NJW algorithm for exposition of ideas.

First, we can calculate the degree matrix directly from X:

D = diag(W1) = diag((XXT − I)1) = diag(X(XT1)− 1).

Next, we write

W̃ = D−
1
2 (XXT − I︸ ︷︷ ︸

W

)D−
1
2 = (D−

1
2 X︸ ︷︷ ︸

:=X̃

)(XTD−
1
2︸ ︷︷ ︸

X̃T

)−D−1

Note that X̃ has the same size (n× d) and zero entries as X.
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We just obtained that W̃ = X̃X̃T −D−1 . Some first observations:

• W̃ = D−
1
2 WD−

1
2 is similar to a row-stochastic matrix P = D−1W:

Therefore, the largest eigenvalue of W̃ = X̃X̃T −D−1 is 1; the next
k − 1 eigenvalues of W̃ are expected to be close to 1. Meanwhile,
there should be a sizable drop at the (k + 1)-th eigenvalue.

• X̃X̃T is symmetric and positive semidefinite, and D−1 can be viewed
as a perturbation to it.

• If D has a constant diagonal, then W̃ have the same eigenvectors
with X̃X̃T (but not the same eigenvalues), and discarding D−1

won’t change the eigenvectors in such a case. ←− We will thus try
to equalize the diagonals of D as much as possible.
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If each cluster has O(n) points and is tight (i.e., within an angle of θ
around the axis), then it can be shown that

di ≥ O(n cos2 θ), 1 ≤ i ≤ n
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Sorted diagonals of D−1 computed from a real data set (20newsgroups)

0 0.5 1 1.5 2

×10 4

0

0.5

1

1.5

2
×10 -4

Strategy: Remove a fraction α of points with smallest degrees (which
tend to be outliers!), to satisfy the condition D−1 ≈ 1

β I, for some (large)
β. This will allow us to approximate the eigenvectors of W̃ by the left
singular vectors of X̃ = D−

1
2 X, which are very efficient to compute!
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Alg. 1: SSC-cosine
Input:

• Data matrix X ∈ Rn×d (sparse or of moderate dimension, with
L2-normalized rows)

• Clustering method (NJW, NCut or DM(t))

• #clusters k

• %outliers α

Output: Clusters C1, . . . , Ck and a set of outliers C0
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Steps:

1. Compute the degree matrix D = diag(X(XT1)− 1) and remove a
fraction α of points (with lowest degrees) as outliers.

2. Find X̃ = D−
1
2 X and its top k left singular vectors Ũ (NJW).

Convert Ũ to U = D−
1
2 Ũ (for NCut) or to U(t) = D−

1
2 ŨΛt (for DM(t)).

3. Normalize the rows of the singular vectors matrix to have unit length
and apply kmeans to find k clusters C1, . . . , Ck.

Remark. We can easily assign the “outliers” (C0) to the clusters C1, . . . , Ck.
←− This is a classification problem.

Guangliang Chen | San José State University −→ Hope College 103/186



On the memory and speed scalability of spectral clustering

Complexity analysis of Alg. 1

Data memory time
Sparse O(ns) O(nsk + nk2)
moderate dim O(nd) O(ndk + nk2)
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Applications: document and image clustering
We use the following data:

• The 20newsgroups data: 18,774 documents (partitioned into 20
newsgroups), 61,118 words (including stopwords)

• Handwritten digits data: USPS (9, 298 × 256), PENDIGITS
(10, 992× 16), MNIST (70, 000× 784), each having 10 classes

Performance metrics: clustering accuracy and CPU time.

Experiments were conducted in MATLAB 2017a on a compute server with
48 GB of RAM and 2 CPU’s with 12 total cores.
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The 20newsgroups data: results

Table 1: Clustering accuracy (and CPU time in seconds) on the 20 news-
groups data as well as its SVD projection (into 100 dimensions).

Projection Method NJW NCut DM(1)

None plain 64.1% (113) 63.8% (108) 60.3% (111)
scalable 64.4% (46.4) 63.1% (43.5) 60.7% (48.8)

SVD (100) plain 72.7% (128) 72.8% (127) 72.6% (132)
scalable 73.6% (17.4) 73.8% (17.8) 74.1% (18.0)

Parameter setting: α = 0.01 (for all algorithms).
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The image data: results

Table 2: Clustering accuracy (and CPU time in seconds)
Data Method NJW NCut DM(1)

usps plain 67.6% (23.7) 67.7% (22.3) 57.9% (24.9)
scalable 67.4% (6.4) 67.7% (6.3) 57.7% (9.2)

pendigits plain 73.5% (27.0) 73.6% (30.7) 63.9% (26.5)
scalable 73.6% (6.5) 73.3% (7.6) 63.9% (4.9)

mnist plain (out of memory)
scalable 52.6% (55.6) 52.5% (54.6) 50.4% (67.9)
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Scalable spectral clustering with general similarity
We focus on the Gaussian similarity (but our technique to be presented
applies to any kind of similarity):

W = (wij), wij = exp
(
−‖xi − xj‖2

2σ2

)

In this case, W is not in product form, so we cannot use the previous
procedure directly.

We present a landmark-based technique to convert this problem back to
the case of cosine similarity.
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Strategy: Select ` � n landmark
points c1, . . . , c` ∈ Rd and compute
the similarities between each xi and
the r closest landmarks cj , yielding
a row-sparse matrix A = (aij) ∈
Rn×` with nonzero entries

aij = exp
(
−‖xi − cj‖2/2σ2

)
We then regard A as a “document-
term” matrix in 2 different ways:

• data documents

• landmark documents
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Next, just apply Alg. 1 (SSC-cosine) with the rows (data documents)
or columns (landmark documents) of the matrix A as input data (after
IDF normalization):

• Data documents clustering: X

• Landmark documents clustering: Still need to extend the labels
to the original data ←− This is easily achieved by weighted s-NN
classification!

Remark. Second method is much faster (less data for kmeans to cluster,
nearest neighbors and weights have already computed).
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Other relevant work: The bipartite graph model
Besides the documents model just presented for landmark-based clustering
with general similarity, we have also developed a bipartite graph model.

(1) We construct a bipartite graph
by using the given data and a small
landmark set as its two parts.
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(2) We run a diffusion process on
the bipartite graph to gather global
information about the data set.
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Addressing the memory scalability

We consider first the special case of cosine similarity: W = XXT − I,
where X ∈ Rn×d represents an extremely large data set that cannot be
fully loaded to computer memory (thus, the scalable algorithm introduced
earlier cannot be applied).

We suppose we are able to access a small random sample Xs ∈ Rs×d of
size s� n. We will use the sample to estimate the top k singular values Σ̃
and right singular vectors Ṽ of X̃ = D−1/2X. Note that Ũ = X̃ṼΣ̃−1.

We then embed the sample as Xs 7−→ X̃sṼΣ̃−1, to group Xs into k
clusters and extend clustering to the rest of the data as they come in.
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Derivation

Since the right singular vectors of X̃ are the eigenvectors of X̃T X̃, we
obtain an expression for this product matrix as follows:

X̃T X̃ = (D−1/2X)T (D−1/2X) = XTD−1X =
n∑
i=1

1
di

xixTi

Let the restrictions of D and X̃ to the sample Xs be

Ds = D(1 : s, 1 : s), X̃s = D−
1
2

s Xs

Then

X̃T X̃ ≈ n

s

s∑
i=1

1
di

xixTi = n

s
XsD−1

s Xs = n

s
X̃T
s X̃s −→ Ṽ, Σ̃
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It remains to estimate Ds (which depends on the full data set) in order to
compute X̃s = D−

1
2

s Xs.

The exact degrees of all the data points are

d = (XXT − I)︸ ︷︷ ︸
W

1n = XXT1n − 1n = X ·
n∑
i=1

xi − 1n

The degrees of the points in the sample are

ds = Xs ·
n∑
i=1

xi − 1s ≈ Xs ·
n

s

s∑
i=1

xi − 1s = n

s
Xs(XT

s 1s)− 1s.
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We summarize the procedure here: Given the random sample Xs, we first
estimate the degrees of the points as follows

Ds ≈ diag
(
n

s
Xs

(
XT
s 1s

)
− 1s

)
and then use it to normalize Xs to obtain that

X̃s = D−1/2
s Xs

Next, perform rank-k SVD on X̃s to get Ũs, Σ̃s, and ṼT
s . It follows that

Ṽ ≈ Ṽs, Σ̃ ≈
√
n

s
Σ̃s.

Finally, perform k-means clustering on the rows of X̃sṼΣ̃−1.

Guangliang Chen | San José State University −→ Hope College 116/186



On the memory and speed scalability of spectral clustering

To explain how to extend clustering to the rest of the data (as they are
gradually loaded into computer memory), we consider an arbitrary new
point xs+1 ∈ Rd. Its degree is estimated similarly to the sample:

ds+1 = xTs+1 ·
n∑
i=1

xi − 1 ≈ xTs+1 ·
n

s

s∑
i=1

xi − 1 = n

s
xTs+1(XT

s 1s)− 1.

Following the embedding of the initial sample, i.e.,

Xs 7−→ X̃sṼΣ̃−1,

we embed xs+1 into the Ũs space as follows:

xs+1 7−→
(
d
−1/2
s+1 xTs+1

)
ṼΣ̃−1

and then assign it to the cluster with the closest centroid.
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How to choose the sample size s
Technique: Incrementally sample more and more data (s1 < s2 < · · · )
and monitor the convergence of {Ṽsi}i≥1 under the Grassmaniann distance,
‖Ṽsi+1ṼT

si+1 − ṼsiṼT
si‖F (see results below on MNIST)
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Thank you for your attention!
Contact: cheng@hope.edu, guangliang.chen@sjsu.edu

My papers:

1. “Memory-efficient spectral clustering with cosine similarity through batch-
based learning", R. Li and G. Chen (submitted)

2. “A general framework for scalable spectral clustering based on document
models”, G. Chen (Pattern Recognition Letters, June 2019)

3. “Scalable spectral clustering with cosine similarity”, G. Chen (ICPR 2018)

4. “Large-scale spectral clustering using diffusion coordinates on landmark
based bipartite graphs", K. Pham and G. Chen (TextGraphs 2018)
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Appendix: Advanced linear algebra
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Symmetric matrices

A square matrix A ∈ Rn×n is said to be symmetric if it coincides with
its transpose, i.e., AT = A.

We denote the set of symmetric matrices of size n× n by

Sn(R) = {A ∈ Rn×n | AT = A}

Symmetric matrices have many nice properties. For example,

• all their eigenvalues are real

• eigenvectors corresponding to distinct eigenvalues must be orthogonal
to each other.
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Furthermore, symmetric matrices are orthogonally diagonalizable, i.e.,
diagonalizable via orthogonal matrices.

Theorem 0.6. Let A ∈ Rn×n be a symmetric matrix. Then there exist a
diagonal matrix Λ = diag(λ1, . . . , λn) ∈ Rn×n and an orthogonal matrix
Q = [q1 . . .qn] ∈ Rn×n such that

A = QΛQT =
n∑
i=1

λiqiqTi

Remark. The above factorization represents the eigendecomposition or
spectral decomposition of A: The λi’s represent the eigenvalues of
A while the qi’s are the associated eigenvectors (with unit norm and
orthogonal to each other).
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Positive (semi)definite matrices
A symmetric matrix A ∈ Sn(R) is said to be positive semidefinite
(PSD) if xTAx ≥ 0 for all x ∈ Rn.

For a PSD matrix A ∈ Sn(R), if the equality holds true only for x = 0
(i.e., xTAx > 0 for all x 6= 0), then A is further said to be positive
definite (PD).

We denote by Sn0+(R) and Sn+(R) the sets of positive semidefinite and of
positive definite matrices of size n× n, respectively.

Note that we must have

Sn+(R) ⊂ Sn0+(R) ⊂ Sn(R) ⊂ Rn×n.
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Spectral decomposition of PSD matrices (in reduced form)

For a PSD matrix A ∈ Sn0+(R),

λ1 ≥ λ2 ≥ · · · ≥ λr > λr+1 = · · · = λn = 0, r = rank(A).

Correspondingly, we may obtain

A =
r∑
i=1

λiqiqTi =
[
q1 . . . qr

]
λ1

. . .
λr



qT1
...

qr

 = QrΛrQT
r

where Qr = [q1 . . . qr] ∈ Rn×r is a tall matrix with orthonormal columns,
and Λr = diag(λ1, . . . , λr) ∈ Rr×r.
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Illustration of the reduced form:

b
b
b
b
b=

A Qr QT
rΛr

The reduced form is more efficient than the full decomposition!
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Matrix square roots (for PSD matrices)
An interesting aspect of positive semidefinite matrices is that they have
square roots (which are also matrices), just like nonnegative numbers have
square roots (which are still numbers).

Def 0.2. Let A ∈ Sn0+(R). The square root of A is defined as the
matrix R ∈ Sn0+(R) such that R2 = A. We denote it by R = A1/2.

Remark. Note that if A ∈ Sn+(R), then R = A1/2 ∈ Sn+(R). In such a
case, we can further define the reciprocal square root of A as

A−1/2 = (A1/2)−1 ∈ Sn+(R).
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Special case: If A ∈ Sn0+(R) happens to be diagonal, i.e.,

A = diag(a1, . . . , an), where a1, . . . , an ≥ 0,

then there is an easy way to find its square root. Define

R = diag
(
a

1/2
1 , . . . , a1/2

n

)
∈ Sn0+(R).

Clearly, R2 = A. This shows that R is indeed a square root of Λ.

Remark. Without the positive semidefiniteness requirement in the definition
of matrix square roots, R won’t be unique as we can arbitrarily modify
the signs of the diagonals a1/2

i without violating the equality condition.
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Theorem 0.7. Let A ∈ Sn0+(R) with spectral decomposition A = QΛQT ,
where Q ∈ Rn×n is an orthogonal matrix and Λ = diag(λ1, . . . , λn) with
λ1 ≥ · · · ≥ λn ≥ 0. Then A has a unique matrix square root

R = QΛ1/2QT .

Proof. First, such defined matrix R is PSD. By direct calculation,

R2 = (QΛ1/2QT )(QΛ1/2QT ) = Q Λ1/2Λ1/2︸ ︷︷ ︸
Λ

QT = A.

We omit the proof of the uniqueness part.

Remark. For any A ∈ Sn+(R) with eigendecomposition A = QΛQT ,

A−1/2 = QΛ−1/2QT , Λ−1/2 = diag
(
λ
−1/2
1 , . . . , λ−1/2

n

)
.
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The generalized eigenvalue problem
Let A,B ∈ Rn×n be two square matrices of the same size. We say that
λ ∈ R is a generalized eigenvalue of (A,B) if there exists a nonzero
vector v ∈ Rn such that

Av = λBv.

The vector v is called a generalized eigenvector of (A,B) corresponding
to λ.

Remark. In the above definition, if we let B = I, then the generalized
eigenvalues of (A,B) would reduce to the ordinary eigenvalues of A:

Av = λv.
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Now, let us rewrite the definition of generalized eigenvalues as

(A− λB)v = 0.

Note that there exists a nonzero solution v if and only if A−λB is singular.
Thus, λ is a generalized eigenvalue of (A,B) if and only if

det(A− λB) = 0.

Let pA,B(λ) = det(A− λB), the characteristic polynomial of (A,B).

Interestingly, pA,B(λ) is also a polynomial in λ, but it can have an arbitrary
order between 0 and n, as we show next.
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Example 0.6. Let

A =
(

1 2
2 4

)
, B =

(
1 1
1 1

)
.

To find the generalized eigenvalues of (A,B), compute

det(A− λB) =
∣∣∣∣∣1− λ 2− λ
2− λ 4− λ

∣∣∣∣∣ = (1− λ)(4− λ)− (2− λ)2 = −λ.

Thus, (A,B) has only one generalized eigenvalue of λ = 0, with corre-
sponding generalized eigenvectors

0 = (A− 0 ·B)v = Av −→ v = k

(
−2
1

)
, k ∈ R.
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Example 0.7. Let

A =
(

1 2
2 4

)
, B =

(
1 2
3 6

)
.

To find the generalized eigenvalues of (A,B), compute

det(A−λB) =
∣∣∣∣∣ 1− λ 2− 2λ
2− 3λ 4− 6λ

∣∣∣∣∣ = (1−λ)(4−6λ)−(2−2λ)(2−3λ) = 0.

Thus, any scalar λ is a generalized eigenvalue of (A,B). This pair of
matrices has infinitely many generalized eigenvalues!

Guangliang Chen | San José State University −→ Hope College 133/186



On the memory and speed scalability of spectral clustering

Generalized symmetric-definite eigenvalue problems

Let A ∈ Sn(R) and B ∈ Sn+(R). The generalized eigenvalue problem

Av = λBv

is called a generalized symmetric-definite eigenvalue problem. Such
problems have a lot of applications.

Remark. The generalized eigenpairs of (A,B) for A ∈ Sn(R),B ∈ Sn+(R)
are actually the eigenpairs of B−1A:

Av = λBv ⇐⇒
(
B−1A

)
v = λv

However, B−1A is not symmetric in general.
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The following theorem indicates that generalized symmetric-definite eigen-
value problems are predictable in terms of the number of (real) generalized
eigenvalues.

Theorem 0.8. Let A ∈ Sn(R) and B ∈ Sn+(R). The generalized symmetric-
definite generalized eigenvalue problem Av = λBv has n generalized eigen-
values λ1, . . . , λn ∈ R with linearly independent generalized eigenvectors
v1, . . . ,vn ∈ Rn satisfying

vTi Bvj = δij , for all 1 ≤ i 6= j ≤ n.
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Proof of the theorem. Since B ∈ Sn+(R), we can rewrite

Av = λBv =⇒ B−1/2AB−1/2 ·B1/2v = λ ·B1/2v

Letting
Ã = B−1/2AB−1/2, and ṽ = B1/2v

we further obtain that
Ãṽ = λṽ

Since Ã ∈ Sn(R), there are n eigenpairs (λi, ṽi), 1 ≤ i ≤ n, with

δij = ṽTi ṽj =
(
B1/2vi

)T
B1/2vj = vTi Bvj .

Consequently, (A,B) has n generalized eigenvalues λi with associated
generalized eigenvectors vi = B−1/2ṽi.
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The ordinary Rayleigh quotients

Rayleigh quotients are encountered in many statistical and machine learning
problems. It is thus necessary to study it systematically.

Def 0.3. The Rayleigh quotient for a given symmetric matrix A ∈ Sn(R)
is a multivariate function f : Rn − {0} 7−→ R defined by

f(x) = xTAx
xTx , x 6= 0.
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Remark. Rayleigh quotients are always scaling invariant. That is, given
any A ∈ Sn(R) and x 6= 0 ∈ Rn,

f(kx) = (kx)TA(kx)
(kx)T (kx) = xTAx

xTx = f(x), for all k 6= 0

In particular, f(−x) = f(x), which indicates that the graph of f is always
symmetric about the origin.

b

‖x‖ = 1

b
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Example 0.8. The Rayleigh quotient for A =
(

1 3
3 2

)
∈ S2(R) is

f(x) = xTAx
xTx = x2

1 + 2x2
2 + 6x1x2

x2
1 + x2

2
, x 6= 0.
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Optimization of Rayleigh quotients

Problem. Given A ∈ Sn(R), find
the maximum (or minimum) of the
associated Rayleigh quotient

max
x 6=0∈Rn

xTAx
xTx

← scaling invariant

Equivalent formulations:

max
x∈Rn: ‖x‖=1

xTAx

max
x∈Rn

xTAx subject to ‖x‖2 = 1

b

‖x‖ = 1

b

←− Quadratic form over unit circle
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Theorem 0.9. For any given symmetric matrix A ∈ Sn(R), let its largest
and smallest eigenvalues be λ1 and λn, with associated eigenvectors
v1,vn ∈ Rn, respectively. Then

max
x∈Rn: x 6=0

xTAx
xTx = λ1, @ x = kv1, ∀k 6= 0

min
x∈Rn: x 6=0

xTAx
xTx = λn, @ x = kvn, ∀k 6= 0

Remark. We often focus on the unit-norm eigenvectors as maximizer and
minimizers.

Remark. This theorem can be proved in two different ways: (1) linear
algebra approach (2) method of Lagrange multipliers.
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Restricted Rayleigh quotients

Sometimes, we may choose to “ex-
clude” the top (bottom) few eigen-
vectors from the optimization do-
main when maximizing (minimizing)
a Rayleigh quotient:

max
x 6=0

vT1 x=0

xTAx
xTx

max
x 6=0

vT1 x=vT2 x=0

xTAx
xTx

In such cases, the effective domain
is the orthogonal complement of the
excluded eigenvector(s).

+

v1
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Theorem 0.10 (Rayleigh-Ritz). Given a symmetric matrix A ∈ Sn(R),
let λ1 ≥ λ2 ≥ · · · ≥ λn be its eigenvalues and v1,v2, . . . ,vn ∈ Rn a
collection of corresponding eigenvectors (in unit norm). We have

max
x 6=0

vT1 x=0

xTAx
xTx = λ2 (when x = ±v2)

max
x 6=0

vT1 x=vT2 x=0

xTAx
xTx

= λ3 (when x = ±v3)

so on and so forth.

Guangliang Chen | San José State University −→ Hope College 143/186



On the memory and speed scalability of spectral clustering

The generalized Rayleigh quotients

Def 0.4. For a fixed symmetric matrix A ∈ Sn(R) and a positive definite
matrix B ∈ Sn+(R) of the same size, a generalized Rayleigh quotient
corresponding to them is a function f : Rn − {0} 7−→ R defined by

f(x) = xTAx
xTBx .

Note that if B = I, then the generalized Rayleigh quotient reduces to an
ordinary Rayleigh quotient.
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This is also a function defined over Rn with the origin excluded, having
the same scaling invariant property as ordinary Rayleigh quotients: Given
A ∈ Sn(R),B ∈ Sn+(R) and x 6= 0, we have

f(kx) = (kx)TA(kx)
(kx)TB(kx) = xTAx

xTBx = f(x), for all k 6= 0.

Similarly, the graph of f is also symmetric about the origin because
f(−x) = f(x) for all x 6= 0.
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Example 0.9. Given A =
(

2 3
3 2

)
∈ S2(R) and B =

(
2 3
3 5

)
∈ S2

+(R),

we have the following generalized Rayleigh quotient:

f(x) = xTAx
xTBx = 2x2

1 + 2x2
2 + 6x1x2

2x2
1 + 5x2

2 + 6x1x2
, x 6= 0 ∈ R2.
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Theorem 0.11. For any two matrices A ∈ Sn(R) and B ∈ Sn+(R), let
the largest and smallest generalized eigenvalues of (A,B) be λ1 and
λn, with corresponding unit-norm generalized eigenvectors v1,vn ∈ Rn,
respectively. Then

max
x 6=0

xTAx
xTBx = λ1, @ x = ±v1

min
x 6=0

xTAx
xTBx = λn, @ x = ±vn
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As for the ordinary Rayleigh quotient, there is a restricted version of the
generalized Rayleigh quotient.

Theorem 0.12. Let A ∈ Sn(R) and B ∈ Sn+(R) be two fixed matrices with
generalized eigenvalues λ1 ≥ · · · ≥ λn and eigenvectors v1, . . . ,vn ∈ Rn,
that is, Avi = λiBvi for each i = 1, . . . , n. We have

max
x 6=0

vT1 Bx=0

xTAx
xTBx = λ2 (when x = ±v2)

min
x 6=0

vT1 Bx=vT2 Bx=0

xTAx
xTBx = λ3 (when x = ±v3)

and so on.

Guangliang Chen | San José State University −→ Hope College 148/186



On the memory and speed scalability of spectral clustering

The singular value decomposition (SVD) for
general matrices

The following is a fundamental result in linear algebra, and also a very
important computing tool in many applications.

Theorem: For any matrix A ∈ Rm×n, there exist two orthogonal matrices
U ∈ Rm×m,V ∈ Rn×n and a nonnegative, diagonal matrix Σ ∈ Rm×n

such that
A = UΣVT .

Moreover, the number of positive diagonals of Σ equals the rank of A.

Guangliang Chen | San José State University −→ Hope College 149/186



On the memory and speed scalability of spectral clustering

Remark. This factorization is called the SVD of A:

• The diagonals of Σ are called the singular values of A

• The columns of U are called the left singular vectors of A.

• The columns of V are called the right singular vectors of A.
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b
b
b
b
b

b
b
b
b
b=

=

(m > n)

(m = n)

b
b

b
b

b
b
b
b
b

=(m < n)

b
b

A U VTΣ

T

T

T
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Example 0.10. It can be directly verified that
1 −1

0 1
1 0


︸ ︷︷ ︸

A

=


2√
6 0 1√

3
− 1√

6
1√
2

1√
3

1√
6

1√
2 − 1√

3


︸ ︷︷ ︸

U

·


√

3
1


︸ ︷︷ ︸

Σ

·

 1√
2

1√
2

− 1√
2

1√
2

T
︸ ︷︷ ︸

VT

.

In the above equation, U,V are orthogonal matrices and Σ is a diagonal
matrix. Therefore, the above factorization represents a singular value
decomposition of A.

Moreover, rank(A) = 2, and there are precisely 2 positive entries in the
diagonal of Σ.
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Connection to symmetric matrices
From the SVD of A we obtain that

AAT= UΣVT ·VΣTUT = U
(
ΣΣT

)
UT

ATA= VΣTUT ·UΣVT = V
(
ΣTΣ

)
VT

This shows that

• U is the eigenvectors matrix of AAT ;

• V is the eigenvectors matrix of ATA;

• The nonzero eigenvalues of AAT ,ATA (which must be the same)
are equal to the squared singular values of A.
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Example 0.11. For the matrix A in the preceding example, we have

AAT =


2√
6 0 1√

3
− 1√

6
1√
2

1√
3

1√
6

1√
2 − 1√

3


︸ ︷︷ ︸

U

·

3
1

0


︸ ︷︷ ︸

ΣΣT

·


2√
6 0 1√

3
− 1√

6
1√
2

1√
3

1√
6

1√
2 − 1√

3


T

︸ ︷︷ ︸
UT

ATA =

 1√
2

1√
2

− 1√
2

1√
2


︸ ︷︷ ︸

V

·
(

3
1

)
︸ ︷︷ ︸

ΣTΣ

·

 1√
2

1√
2

− 1√
2

1√
2

T
︸ ︷︷ ︸

VT
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How to prove the SVD theorem
Given any matrix A ∈ Rm×n, the SVD can be thought of as solving a
matrix equation for three unknown matrices (each with certain constraint):

A = U︸︷︷︸
orthogonal

· Σ︸︷︷︸
diagonal

· VT︸︷︷︸
orthogonal

.

Suppose such solutions exist. From

ATA = V
(
ΣTΣ

)
VT

we can find V and Σ, which contain the eigenvectors and square roots of
eigenvalues of ATA, respectively.
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After we have found both V and Σ, rewrite the matrix equation as

Am×nVn×n = Um×mΣm×n,

or in columns,

A[v1 . . .vr vr+1 . . .vn] = [u1 . . .ur ur+1 . . .um]


σ1

. . .
σr

.

By comparing columns, we obtain

Avi =

σiui, 1 ≤ i ≤ r (#nonzero singular values)
0, r < i ≤ n
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This tells us how to find the first r columns of matrix U ∈ Rm×m:

ui = 1
σi

Avi for all 1 ≤ i ≤ r.

The remaining columns of U will be found by completing an orthonormal
basis for Rm, starting with {u1, . . . ,ur}:

uTi x = 0, i = 1, . . . , r
‖x‖ = 1
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Different versions of SVD

• Full SVD: Am×n = Um×mΣm×nVT
n×n

• Compact SVD: Suppose rank(A) = r. Define

Ur = [u1, . . . ,ur] ∈ Rm×r

Vr = [v1, . . . ,vr] ∈ Rn×r

Σr = diag(σ1, . . . , σr) ∈ Rr×r

Then
A = UrΣrVT

r .
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b
b
b
b

b
b
b
b

=

=

(m > n)

(m = n)

b
b
b
b=(m < n)

A Ur VT
rΣr

T

T

T
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• Rank-1 decomposition:

A = [u1, . . . ,ur]


σ1

. . .
σr



vT1
...

vTr

 =
r∑
i=1

σiuivTi .

This has the interpretation that A is a weighted sum of rank-one
matrices, as for a square, symmetric matrix.

Note that −ui,−vi are also corresponding singular vectors to σi:

A =
r∑
i=1

σiuivTi =
r∑
i=1

σi(−ui)(−vi)T .

This shows that the SVD of a matrix is not unique.
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• Truncated SVD: For any integer 1 ≤ K ≤ r, we define the trun-
cated SVD of A with K terms as

A ≈
K∑
i=1

σiuivTi = AK

where the singular values are assumed to be sorted from large to
small (so σ1, . . . , σK represent the largest K singular values).

Note that AK has a rank of K and it can be regarded as a low-rank
approximation to A. It is memory efficient and often adequate for
computing tasks.
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Matrix norm
A matrix norm is a norm on Rm×n as a vector space (consisting of all
matrices of the fixed size).

More specifically, a matrix norm is a function

‖ · ‖ : Rm×n → R

that satisfies the following three conditions:

• ‖A‖ ≥ 0 for all A ∈ Rm×n and ‖A‖ = 0 if and only if A = O

• ‖kA‖ = |k| · ‖A‖ for any scalar k ∈ R and matrix A ∈ Rm×n

• ‖A + B‖ ≤ ‖A‖+ ‖B‖ for any two matrices A,B ∈ Rm×n
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Note that multiplication is also defined between matrices (with compatible
sizes).

We say that a matrix norm ‖ · ‖ is sub-multiplicative if for any two
matrices A ∈ Rm×n,B ∈ Rn×p,

‖AB‖ ≤ ‖A‖ · ‖B‖.

Some textbooks include the sub-multiplicative requirement in the definition
for matrix norms.

The norms introduced here are all sub-multiplicative anyway.
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The Frobenius norm
Def 0.5. The Frobenius norm of a matrix A ∈ Rm×n is defined as

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

a2
ij

It is equivalent to the Euclidean 2-norm on vectorized matrices (i.e., Rmn):

‖A‖F = ‖A(:)‖2

Thus, it must satisfy all the three conditions of a norm.
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Example 0.12. Let

A =

1 −1
0 1
1 0

 .
By direct calculation,

‖A‖F =
√

12 + (−1)2 + 02 + 12 + 12 + 02 = 2.
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Remark. For any matrix A ∈ Rm×n,

‖A‖2F =
m∑
i=1
‖Ai‖22 =

n∑
j=1
‖aj‖22

b b b
bbb

b b b
b
b

bb

b
bb

b

b
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Proposition 0.13. For any matrix A ∈ Rm×n,

‖A‖2F = trace(AAT ) = trace(ATA)

Proof.

trace(AAT ) =
m∑
i=1

Ai ·ATi =
m∑
i=1
‖Ai‖22 = ‖A‖2F .

The other equality can be proved similarly, or instead using the matrix
trace property:

trace(AB) = trace(BA)

where A ∈ Rm×n and B ∈ Rn×m.
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Theorem 0.14. Let A ∈ Rm×n be any matrix. Suppose its (nonzero)
singular values are σ1 ≥ · · · ≥ σr > 0, where r = rank(A). Then

‖A‖F =

√√√√ r∑
i=1

σ2
i

Proof. Consider the matrix ATA. Its nonzero eigenvalues are λi = σ2
i .

According to the theorem on the preceding slide,

‖A‖2F = trace(ATA) =
r∑
i=1

λi =
r∑
i=1

σ2
i .
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The matrix operator norm
A second matrix norm is the operator norm, which is induced by a vector
norm on Euclidean spaces.
Theorem 0.15. For any vector norm ‖ ·‖ on Euclidean spaces, the following
is a matrix norm on Rm×n:

‖A‖ def= max
x 6=0

‖Ax‖
‖x‖ = max

u∈Rn:‖u‖=1
‖Au‖
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When the Euclidean norm (i.e., 2-norm) is used, the induced matrix
operator norm is called the spectral norm.

Def 0.6. The spectral norm of a matrix A ∈ Rm×n is defined as

‖A‖2 = max
x 6=0

‖Ax‖2
‖x‖2

= max
u∈Rn:‖u‖2=1

‖Au‖2
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Theorem 0.16. Let A ∈ Rm×n be any matrix whose singular values (from
large to small) are σ1 ≥ σ2 ≥ · · · . Then

‖A‖2 = σ1.

Proof. Consider the matrix ATA which is a positive semidefinite matrix
with largest eigenvalue λ1 = σ2

1. We have

‖A‖22 = max
x 6=0

‖Ax‖22
‖x‖22

= max
x 6=0

xTATAx
xTx = λ1 = σ2

1,

where we used the Rayleigh quotient theorem. The maximizer is the largest
right singular vector v1 of A (corresponding to σ1).
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Low-rank approximation of matrices
Problem. For any matrix A ∈ Rm×n and integer k ≥ 1, find the rank-k
matrix B that is the closest to A (under the Frobenius, or spectral norm):

min
B∈Rm×n : rank(B)=k

‖A−B‖

Remark. This problem arises in a number of tasks, e.g.,

• Data compression (and noise reduction)

• Matrix completion (and recommender systems)

• Orthogonal least squares fitting
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Theorem 0.17 (Eckart–Young–Mirsky). Given A ∈ Rm×n and 1 ≤ k ≤
r = rank(A), let Ak be the truncated SVD of A with the largest k terms:
Ak =

∑k
i=1 σiuivTi . Then Ak is the best rank-k approximation to A in

terms of both the Frobenius and spectral norms:

min
B : rank(B)=k

‖A−B‖F = ‖A−Ak‖F =
√∑
i>k

σ2
i

min
B : rank(B)=k

‖A−B‖2 = ‖A−Ak‖2 = σk+1.

Remark. The theorem still holds true if the equality constraint rank(B) = k

is relaxed to the inequality constraint rank(B) ≤ k (which will also include
all the lower-rank matrices).
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Pseudoinverse

Def 0.7. Let A ∈ Rm×n. We call the matrix B ∈ Rn×m the Moore–
Penrose pseudoinverse of A if it satisfies all four conditions below:

(1) ABA = A ←− B is a generalized inverse of A

(2) BAB = B ←− A is a generalized inverse of B

(3) (AB)T = AB ←− AB is symmetric

(4) (BA)T = BA ←− BA is symmetric
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Remark.

• If B only satisfies (1), it is known as a generalized inverse of A;
if B only satisfies (1) and (2), it is called a reflexive generalized
inverse.

• For any matrix A ∈ Rm×n, the pseudoinverse always exists and is
unique. We denote the pseudoinverse of A as A†.

• The symmetric form of the definition implies B = A† and A = B†,
and thus, A = (A†)†.

• If A is invertible, then A† = A−1.
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Example 0.13. Let A =
[
1 0
1 0

]
. Verify that A† =

[
1
2

1
2

0 0

]
.

By direct calculation,

AA† =
[
1 0
1 0

] [
1
2

1
2

0 0

]
=
[

1
2

1
2

1
2

1
2

]
(symmetric)

A†A =
[

1
2

1
2

0 0

] [
1 0
1 0

]
=
[
1 0
0 0

]
(symmetric)

AA†A =
[
1 0
1 0

] [
1
2

1
2

0 0

] [
1 0
1 0

]
=
[
1 0
1 0

]
= A

A†AA† =
[

1
2

1
2

0 0

] [
1 0
1 0

] [
1
2

1
2

0 0

]
=
[

1
2

1
2

0 0

]
= A†
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Example 0.14. It can be directly verified in the same way that the
pseudoinverse of the following “diagonal" matrix

A =

0 0 0 0 0
0 1 0 0 0
0 0 2 0 0


is

A† =


0 0 0
0 1

2 0
0 0 1

3
0 0 0
0 0 0


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Orthogonal projection matrices
Def 0.8. A square matrix P is called a orthogonal projection matrix if
it is both symmetric and idempotent, i.e., P = PT and P = P2.

b b

Pbb

Col(P)
b

0

(I−P)b

Remark. For any orthogonal projec-
tion matrix P, the matrix I −P is
also an orthogonal projection matrix:

First, I−P is also symmetric.

Second,

(I−P)2 = I− 2P + P2 = I−P.
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Let P ∈ Rn×n be any orthogonal projection matrix. It must project any
vector b ∈ Rn onto its column space, i.e., Pb ∈ Col(P).

This leads to the following decomposition of b:

b = Pb︸︷︷︸
∈Col(P)

+ (I−P)b︸ ︷︷ ︸
∈Col(I−P)

.

Since P = PT by definition, we have

(Pb)T (I−P)b = bTP(I−P)b = bT (P−P2)b = 0.

This shows that the two components, i.e., Pb and (I−P)b, are orthogonal
to each other.
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Theorem 0.18. For any matrix A ∈ Rm×n, AA† is an orthogonal projection
matrix (onto the column space of A).

b b

Pbb

Col(A)

b0

a1 a2

an

A ∈ Rm×n

a1 a2 an

P = AA†

(I−P)b
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Finding matrix pseudoinverse in general
Theorem 0.19. Let A ∈ Rm×n be any matrix. Suppose its full SVD is
A = UΣVT . Then the pseudoinverse of A is

A† = VΣ†UT .

Proof We verify the four conditions directly:

AA†A = UΣVT ·VΣ†UT ·UΣVT = UΣΣ†ΣVT = UΣVT = A
A†AA† = VΣ†UT ·UΣVT ·VΣ†UT = VΣ†ΣΣ†UT = VΣ†UT = A†

AA† = UΣVT ·VΣ†UT = UΣΣ†UT (symmetric)
A†A = VΣ†UT ·UΣVT = VΣ†ΣVT (symmetric)
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Remark. The previous formula for A† is also in full SVD form:

A† = VΣ†UT

It can be simplified into the compact SVD form

A† = VrΣ−1
r UT

r

Thus, it suffices to find the compact SVD of A and use it to find A†.

This simplified formula is computationally more efficient, as it avoids
computing the redundant left/right singular vectors.
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Finding matrix pseudoinverse in a special case

Theorem 0.20. Let A ∈ Rm×n be any tall matrix with full column rank
(i.e., rank(A) = n ≤ m). Then the pseudoinverse of A is

A† = (ATA)−1AT .

Remark. The theorem implies that for any tall matrix A ∈ Rm×n with
full column rank (i.e., rank(A) = n ≤ m), the following is an orthogonal
projection matrix (onto the column space of A):

AA† = A(ATA)−1AT .
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Proof. It suffices to verify the four conditions for being a pseudoinverse:

AA†A = A · (ATA)−1AT ·A = A
A†AA† = (ATA)−1AT ·A · (ATA)−1AT = A†

AA† = A(ATA)−1AT (symmetric)
A†A = (ATA)−1AT ·A = In (symmetric)

Therefore, A† = (ATA)−1AT is the pseudoinverse of A.
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Remark. Let U ∈ Rm×n be a tall matrix with orthonormal columns (e.g.,
an orthonormal basis matrix). Then it has full column rank, and

UTU =


uT1
...

uTn

 [u1 . . .un] =


1

. . .
1

 = In

It follows that

• U† = (UTU)−1UT = UT (pseudoinverse), and

• UU† = UUT (orthogonal projection matrix).
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Further learning

See Math 250 Mathematical Data Visualization at San José State:

https://www.sjsu.edu/faculty/guangliang.chen/Math250.html
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