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Section 2.3 Counting Techniques



Counting

Introduction

Knowing how to count is very important in the study of probability, as
it is often needed to count the objects in a sample space, or those in a
subset (i.e. event).

For example, in the setting of a finite sample space with equally likely
outcomes, the formula for computing the probability of any event E ⊂ S

involves two counting tasks:

P (E) = |E|
|S|

.
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Counting

Fundamental Counting Principle

Theorem 0.1. Suppose an experiment can be performed in a sequence of
k steps, such that

• the first step can be done in n1 ways, and

• for each result of step 1, step 2 can always be done in n2 ways, and

• step 3 can always be done in n3 ways for each combination of results
of steps 1 and 2, so on and so forth.

Then the entire experiment has a total of n1n2 · · ·nk possible outcomes.
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Counting
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Counting

Example 0.1. A local restaurant provides 5 kinds of bread, 4 kinds of
cheese, 4 kinds of meats, and 6 kinds of sauces. In how many ways can
you order a sandwich?
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Counting

Example 0.2. How many different CA driver license numbers are there
(1 capital letter followed by 7 digits)? How many driver license numbers
have all repeated digit? All distinct digits?

Solution:

26 · 10 · 10 · · · 10︸ ︷︷ ︸
7 times

= 260, 000, 000

26 · 10 · 1 · · · 1︸ ︷︷ ︸
6 copies

= 260

26 · 10 · 9 · · · 4︸ ︷︷ ︸
7 numbers

= 15, 724, 800
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Counting

Example 0.3. How many 3-digit numbers are divisible by 5?
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Counting

Permutations
Briefly, permutations are ordered lists consisting of distinct objects, e.g.,

{0, 1, 2, . . . , 9} −→ 5810, 105, 043987, 71, 3028971, 16345, . . .

Def 0.1. A permutation of size r chosen from a set of n objects is an
ordered list of r distinct objects from the set (without replacement).

position 1 position 2 position r
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Counting

Example 0.4. List all permutations of size r = 3 chosen from the set
S = {a, b, c, d}. How many are there? What if r = 4?
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Counting

Theorem 0.2. The number of permutations of size r that can be formed
from a total of n objects is

P (n, r) = n(n− 1) · · · (n− r + 1)︸ ︷︷ ︸
r integers

= n!
(n− r)! .

In particular,

P (n, n) = n! ←− #full permutations of size n
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Counting

Example 0.5. In how many different ways can 5 people be arranged in a
row? Along a circle?
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Counting

Example 0.6. Suppose you have 10 textbooks, in which 5 are about math,
3 about computer science and 2 about English. In how many different
ways can you arrange them in a line to put on your bookshelf? What if
you want to have the books of the same subject all together?
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Counting

Example 0.7 (Birthday problem).
Assume that people’s birthdays are
equally likely to occur among the
365 days of the year and ignore leap
years. Find the probability p that no
two people in a class of 35 have a
common birthday, i.e., all students
have different birthdays.
(Answer: .1856.)

0 10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

probability of no common birthday

n

p

Prof. Guangliang Chen | Mathematics & Statistics, San Jose State University 14/25



Counting

(blank slide)
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Counting

Combinations

Briefly, combinations are unordered collections of distinct objects, e.g.,

{0, 1, 2, . . . , 9} −→ {0, 1, 5, 8}, {0, 3, 4, 9}, {1, 2, 7, 9}, . . .

Def 0.2. A combination of size r chosen from a set of n objects is an
unordered selection of r distinct objects from the set (without replacement).

Example 0.8. List all combinations of size 3 chosen from the set S =
{a, b, c, d}.
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Counting

Theorem 0.3. The number of combinations of size r that can be formed
from a total of n objects is(

n

r

)
= P (n, r)

r! = n!
(n− r)! · r! .

Remark. To compute
(n

r

)
by hand, use the following equivalent formula

(and make cancellations as much as possible):(
n

r

)
= n · (n− 1) · · · (n− r + 1)

1 · 2 · · · r ←− “largest r”
“smallest r”
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Counting

In particular, (
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for any 0 ≤ r ≤ n(

n
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)
= 1
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Counting

Example 0.9. Consider the problem of choosing 4 members from a group
of 10 to work on a special project.

(a) Suppose two people A and B really like each other, so they must be
simultaneously chosen or skipped. How many distinct four-person
teams can be chosen?

(b) Suppose two people A and B really hate each other, so they cannot
be both selected for the project. How many distinct four-person
teams can be chosen?
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Counting

(blank slide)
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Counting

Example 0.10. An urn has 5 red balls and 7 blue balls. Suppose you
randomly select 5 balls from the urn. What is the probability that your
hand has exactly 3 red balls?
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Counting

A ordinary deck of 52 cards is divided into 4 suits (heart, diamond, spade
and club) and 13 ranks (2, 3, . . . , 10, J, Q, K, A)

Example 0.11. Suppose your randomly draw 5 cards from a deck of 52.
What is the probability that you have a

(a) four of a kind (4 cards of the same rank, and one side card)

(b) flush (5 cards of the same suit)
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Counting

(blank slide)
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Counting

Summary

We covered the following material during this lecture:

• Fundamental Counting Principle

• Permutations (ordered lists of distinct objects): Given a set of n

objects, the total number of permutations of size r that can be
formed from the set is

P (n, r) = n(n− 1) · · · (n− r + 1)︸ ︷︷ ︸
r integers

= n!
(n− r)!
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Counting

• Combinations (unordered lists of distinct objects): Given a set of
n objects, the total number of combinations of size r that can be
formed from the set is(

n

r

)
= P (n, r)

r! = n(n− 1) · · · (n− r + 1)
r(r − 1) · · · 1 = n!

(n− r)! · r!
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