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Sampling distributions

Introduction
So far, we have covered the distribution of a single random variable
(discrete or continuous) and the joint distribution of two discrete random
variables.

Sampling distributions concern the randomness associated to a statistic
based on a random sample from a population.

It serves as the bridge between probability and statistics.

We present this important concept using a practical example - egg weight
(see next slide).
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Sampling distributions

Motivating example

Suppose that the weights (in grams)
of brown eggs produced at a local
farm have a normal distribution:
X ∼ N(65, 22).
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Sampling distributions

Those eggs are divided into cartons
of size 12, to be sold on the market.

You randomly select a carton and
measure the weights of all the 12
eggs in it.

Let X̄ be their average weight.

X̄ clearly may vary from carton to
carton, and thus is a (continuous)
random variable.

Question: What is the distribution of X̄?
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Sampling distributions

The above question is about the sampling distribution of a statistic.

• Population: all brown eggs produced at the farm

• Sample: a carton of 12 eggs

• Statistic: X̄ (average weight of the 12 eggs in the sample)

Population

Sample
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Sampling distributions

To study the distribution of X̄, we denote individual weights of the 12
to-be-selected eggs as X1, . . . , X12.

We then have
X̄ = X1 + · · ·+X12

12 .

What we know about X1, . . . , X12:
They are identically and independently distributed (iid):

X1, . . . , X12
iid∼ N(65, 22)

and are called a random sample (of size 12) from the distribution
N(65, 22).
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Sampling distributions

Random sample

Def 0.1. More generally, a collection of n random variables X1, . . . , Xn

is called a random sample if they are

(1) identically distributed according to some pmf/pdf f(x), and

(2) independent.

In short, we write X1, . . . , Xn
iid∼ f(x).
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Sampling distributions

Example 0.1. Suppose you toss a coin (with probability of heads p) repeat-
edly and independently for a total of n times, and let X1, . . . , Xn denote
the numerical outcomes of individual trials: 1 (heads) or 0 (tails). This
constitutes a random sample from the Bernoulli(p) distribution because

X1, . . . , Xn
iid∼ Bernoulli(p).
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Sampling distributions

Example 0.2. Let X1, . . . , Xn represent n repeated and independent
measurements of an object’s length. They can be thought of as a random
sample from a normal distribution

X1, . . . , Xn
iid∼ N(µ, σ2)

where

• µ: true length (if the measurement process is unbiased)

• σ2: variance of the measurement error.
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Sampling distributions

Specific realizations of a random sample

Example 0.3. Suppose you actually buy a carton of n = 12 eggs from
the farm and measure their weights individually. Then you may obtain a
data set like the following (called a specific sample):

x1 = 65.4, x2 = 65.0, x3 = 64.8, x4 = 65.1, x5 = 64.8, x6 = 64.4,
x7 = 65.0, x8 = 65.1, x9 = 65.5, x10 = 64.8, x11 = 64.8, x12 = 65.2

Notation. We use lowercase letters such as x1, x2, . . . to represent specific
values of the random variables (X1, X2, . . .) in a random sample.
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Sampling distributions

Remark. If we realize the sampling process again, then we may obtain a
different set of weights. For example,

x1 = 65.6, x2 = 64.3, x3 = 64.2, x4 = 65.4, x5 = 64.9, x6 = 64.4,
x7 = 65.2, x8 = 65.2, x9 = 65.0, x10 = 64.7, x11 = 64.5, x12 = 65.1
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Sampling distributions

Statistic
Def 0.2. Mathematically, a statistic is just a summary of a random sample
by certain combination rule g:

U = g(X1, X2, . . . , Xn)

f(x)

X1

X2

Xn

b

b
b

g U

Random sample

Combination rule

Statistic
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Sampling distributions

Remark. Depending on purpose, different statistics may be defined on the
same random sample. Two common ones are

• Sample mean

X̄ = 1
n

n∑
i=1

Xi ←− a measure of center, or location

• Sample variance

S2 = 1
n− 1

n∑
i=1

(Xi − X̄)2 ←− a measure of variability

= 1
n− 1

[
n∑

i=1
X2

i − n · X̄2
]
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Sampling distributions

Other examples of statistics include

• sample median (also a measure of center)

• sample minimum or maximum

• sample range (i.e., sample maximum - sample minimum)

• trimmed mean

See Chapter 1 for details.
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Sampling distributions

Statistics are random variables

Clearly, for different realizations of the sampling process, the values of the
statistic may vary. For the egg weight example (and the statistic X̄),

(1) One realization (x̄ = 64.992):

x1 = 65.4, x2 = 65.0, x3 = 64.8, x4 = 65.1, x5 = 64.8, x6 = 64.4,
x7 = 65.0, x8 = 65.1, x9 = 65.5, x10 = 64.8, x11 = 64.8, x12 = 65.2

(2) Another realization (x̄ = 64.875) :

x1 = 65.6, x2 = 64.3, x3 = 64.2, x4 = 65.4, x5 = 64.9, x6 = 64.4,
x7 = 65.2, x8 = 65.2, x9 = 65.0, x10 = 64.7, x11 = 64.5, x12 = 65.1
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Sampling distributions

Sampling distribution of a statistic
Def 0.3. The probabilistic distribution of a statistic (as a random variable)

U = g(X1, X2, . . . , Xn)

is called the sampling distribution of the statistic.
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Sampling distributions

Simulation

We “selected” 500 cartons of eggs randomly from the farm (through
computer simulation) and computed their average weights. Below shows
50 observations of X̄:

65.0506 64.7592 65.0571 64.9674 65.4973 64.7503 65.0393 64.6714
65.3764 65.2525 65.2012 64.4910 65.6002 65.1868 65.0916 63.8280
65.2636 64.9638 65.2998 65.5587 63.9801 65.3903 64.9052 65.7352
64.6329 64.5109 65.7044 64.3291 65.1044 64.8036 66.0407 65.3560
65.3534 65.4668 64.7394 65.1690 64.5668 64.8478 64.0334 65.7562
64.8553 64.9939 65.6044 64.5237 64.2092 64.5860 65.2096 65.5114
64.6195 65.0312
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Sampling distributions

We can display all 500 values through a histogram shown below
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Sampling distributions

The sample mean

We focus on the sample mean statistic

X̄ = 1
n

n∑
i=1

Xi

where
X1, . . . , Xn

iid∼ f(x)

and
E(Xi) = µ, Var(Xi) = σ2, for all i.
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Sampling distributions

We present three different results for the statistic X̄:

1. Expectation and variance of X̄ (for any distribution f(x))

2. Exact distribution of X̄ when f(x) is a normal distribution

3. Approximate distribution of X̄ for nonnomral distributions in the
setting of a large sample
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Sampling distributions

General distributions: Expectation and variance of X̄

Theorem 0.1. Suppose X1, . . . , Xn
iid∼ f(x), with E(Xi) = µ (population

mean) and Var(Xi) = σ2 (population variance). Then

E(X̄) = µ, Var(X̄) = σ2

n
, Std(X̄) = σ√

n

Remark. This result does NOT concern the specific distribution of X̄!
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Sampling distributions

Proof. By linearity and independence,

E(X̄) = 1
n

(E(X1) + · · ·+ E(Xn)) = 1
n

(µ+ · · ·+ µ) = µ

Var(X̄) = 1
n2 (Var(X1) + · · ·+ Var(Xn)) = 1

n2 (σ2 + · · ·+ σ2) = σ2

n
.

Remark. The theorem indicates that

• expectation of X̄ is µ (population mean), and

• variance of X̄ is only 1/n of the population variance (for single Xi)
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Sampling distributions

Example 0.4. Weights of 500 single eggs (left) and average weights of
500 cartons (right), all selected at random.
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Sampling distributions

Normal populations: Exact distribution of X̄

Assume a random sample

X1, . . . , Xn
iid∼ N(µ, σ2).

Theorem 0.2. We have

X̄ ∼ N(µ, σ
2

n
).

This also implies that

X̄ − µ
σ/
√
n
∼ N(0, 1).
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Sampling distributions

Remark. In this setting of a normal population, the sample variance statistic
S2, after being properly scaled, can be shown to follow a chi-square
distribution:

(n− 1)S2

σ2 ∼ χ2(n− 1) ←− Gamma(α = n− 1
2 , β = 2).
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Sampling distributions

Example 0.5. In the brown egg example, suppose the population distribu-
tion is N(65, 22). For a random sample of size 12, what is the probability
that the sample mean X̄ is within 65± 1? What about an individual egg?
(Answers: .9164, .3829)
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Sampling distributions

Example 0.6. In the library elevator of a large university, there is a sign
indicating a 16-person limit as well as a weight limit of 2500 lbs. When
the elevator is full, we can think of the 16 people in the elevator as a
random sample of people on campus. Suppose that the weight of students,
faculty, and staff is normally distributed with a mean weight of 150 lbs
and a standard deviation of 27 lbs. What is the probability that the total
weight of a random sample of 16 people in the elevator will exceed the
weight limit? (Answer : .1762)
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Sampling distributions

Solution:
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Sampling distributions

Nonnormal populations: Approximate distribution of X̄

Assume a random sample

X1, . . . , Xn
iid∼ f(x) ←− any distribution

and that the population has finite mean µ and variance σ2.

Theorem 0.3. If n is large (30 or greater), then

X̄
approx.∼ N

(
µ,
σ2

n

)
, and X̄ − µ

σ/
√
n

approx.∼ N(0, 1).

Remark. This is called the Central Limit Theorem (CLT), one of the
most important results in probability and statistics.
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Sampling distributions

Example 0.7. Suppose salaries of all SJSU employees follow an exponential
distribution with average salary = 45K (which means that λ = 1

45). We
draw a random sample of size n from the population, and compute the
sample mean X̄.

We display the histograms of the simulated values of X̄ through 500
repetitions for each of n = 1, 3, 12, 30.
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Sampling distributions

Example 0.8 (Employee salary distribution, cont’d). Suppose we draw a
random sample of size 30 from the population. Find P (X̄ > 55). Answer:
0.1118 (CLT), 0.1157 (exact)
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Sampling distributions

The normal approximation to Binomial is a direct consequence of the CLT.
Corollary 0.4. Let X ∼ B(n, p). If n is large (i.e., np, n(1 − p) ≥ 10),
then

X − np√
np(1− p)

approx.∼ N(0, 1)

Proof. Consider the experiment of tossing a coin independently for a total
of n times, and denote the results by X1, . . . , Xn. Then

X1, . . . , Xn
iid∼ Bernoulli(p), and X =

n∑
i=1

Xi ∼ B(n, p).

According to the CLT,
X̄ − µ
σ/
√
n

= X̄ − p√
p(1− p)/

√
n

= X − np√
np(1− p)

approx.∼ N(0, 1).
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Sampling distributions

Remark. In the setting of a random sample from a Bernoulli distribution,

X1, . . . , Xn
iid∼ Bernoulli(p)

the sample mean

X̄ = 1
n

n∑
i=1

Xi ←− sample proportion p̂

represents the proportion of successes in the sample.

We have showed that if n is large, then

X̄ − µ
σ/
√
n

= p̂− p√
p(1− p)/n

approx.∼ N(0, 1).
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Sampling distributions

A “large-sample” joke
One day there was a fire in a wastebasket in the Dean’s office and in
rushed a physicist, a chemist, and a statistician.

The physicist immediately starts to work on how much energy would have
to be removed from the fire to stop the combustion. The chemist works
on which reagent would have to be added to the fire to prevent oxidation.

While they are doing this, the statistician is setting fires to all the other
wastebaskets in the office.

“What are you doing?” they demanded. “Well to solve the problem,
obviously you need a large sample size” the statistician replies.
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Sampling distributions

The distribution of a linear combination
Def 0.4. Given random variables X1, . . . , Xn and constants a1, . . . , an,

Y = a1X1 + · · ·+ anXn =
n∑

i=1
aiXi

is called a linear combination of the Xi’s.

Example 0.9. For three variables X1, X2, X3, the following are all linear
combinations of them: X1 + 2X2 − 3X3,

1
3(X1 +X2 +X3), X1 −X2

Remark. The sample mean is a special linear combination of a random
sample X1, . . . , Xn

iid∼ f(x) with equal weights: a1 = · · · = an = 1/n.
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Sampling distributions

We have the following general result.

Theorem 0.5. Any linear combination of independent normal random
variables is still normal. That is, if

X1 ∼ N(µ1, σ
2
1), . . . , Xn ∼ N(µn, σ

2
n)

are independent random variables, then for any constants a1, · · · , an,

Y =
n∑

i=1
aiXi ∼ N

(
n∑

i=1
aiµi,

n∑
i=1

a2
iσ

2
i

)
.

Remark. This reduces to X̄ ∼ N(µ, σ2/n) when a1 = · · · = an = 1/n,
µ1 = · · · = µn = µ and σ2

1 = · · · = σ2
n = σ2.
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Sampling distributions

Summary

This presentation covers the following:

• Basic concepts

– Population: set of all individuals (whose certain characteristic
is of interest)

– Sample: a subset of the population (to be measured)

– Random sample: a collection of random variablesX1, . . . , Xn
iid∼

f(x), where f(x) represents the pmf/pdf of the population

– Statistic: a numerical summary of the sample, such as X̄, S2

Prof. Guangliang Chen | Mathematics & Statistics, San José State University 40/42



Sampling distributions

– Sampling distribution of a statistic: probabilistic distribution
of the statistic as a random variable

• The sample mean statistic: For any random sampleX1, . . . , Xn
iid∼

f(x), define
X̄ = 1

n

∑
Xi

If the population distribution f(x) has mean µ and variance σ2, then

E(X̄) = µ, Var(X̄) = σ2

n
, Std(X̄) = σ√

n
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Sampling distributions

• Sampling distributions of X̄

– If the population is normal (N(µ, σ2)), then the sample mean
has the following sampling distribution:

X̄ ∼ N
(
µ,
σ2

n

)

– For non-normal populations, if the sample size is large (i.e.,
n ≥ 30), then

X̄
approx∼ N

(
µ,
σ2

n

)
This is called the central limit theorem (CLT).
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