
On Classification: An Empirical Study of Existing Algorithms

Based on Two Kaggle Competitions

Wilson Florero-Salinas (Team Leader), Sha Li (Team Leader)
Xiaoyan Chong, Dan Li, Minglu Ma, Abhirupa Sen, Carson Sprock, Yue Wang

Faculty Advisor: Guangliang Chen

November 14, 2016

Abstract

Classification is a machine learning application used to predict group membership for data
instances. In this paper we present various classification techniques including nearest-neighbors,
decision trees, logistic regression, support vector machines and neural networks. Performance
is compared based on two data sets from data science competitions by Kaggle. The first one
is handwritten digits recognition and the second is to predict which customers will respond to
a direct mail offer. The goal of this paper is to provide an overview of different classification
techniques in the literature.
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1 Introduction

1.1 Introduction to the Kaggle.com Competitions

Kaggle is an online platform for data science competitions. This platforms lets companies and
researchers post their data so that statisticians and data scientists compete to produce the best
predictive models. Kaggle’s method of operation consists of first having the competition host
prepare the data and description of the problem. Next, participants experiment with different
machine learning techniques and compete against each other to produce the best predictive model.
Competitors are also allowed to communicate with each other and share ideas or code publicly in
the platform, and even join the competition as a team. Participants may test their models and
submit their results various times during the competition until the deadline. After the competition
deadline, models are evaluated with hidden solution files.

1.2 The Data

1.2.1 MNIST Data

Computer image recognition has been a growing field intersecting many disciplines such as com-
puter science, mathematics, and engineering. The interest in these type of problems has increased
over the years because of the potential applications this has lead to, ranging from face detection
and recognition, surveillance, national security, bank transactions, and artificial intelligence. In
the MNIST Digit Recognition competition, the problem is to identify the digits from images of
handwritten digits. More precisely, given the image of a handwritten digit, correctly determine or
predict the digit displayed in the image.

The MNIST data set is a subset of a larger data set collected by NIST, the US National Institute
of Standards and Technology. It consists of 28x28 images of handwritten digits, ranging from 0 to
9. Table 1 shows a distribution of each of the 10 digits. The images are size-normalized, centered,
and partitioned in two sets, 60,000 for training and 10,000 for testing. Figure 1 shows a small
sample from the MNIST data set.

digit 0 1 2 3 4 5 6 7 8 9

count 5923 6742 5958 6131 5842 5421 5918 6265 5851 5949

Table 1: Distribution of the 10 digits

Figure 1: A small subset of the MNIST data set.

The natural variation in handwriting style between people poses several challenges. Due to the
orientation in which the digit was written (left handed vs right handed), the digits in the dataset
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have a natural slant that can influence their classification. The thickness of each digit is another
challenge and as shown in Figure 2, some digits are so thick that it loses an important characteristic
of that digit, namely the closing of the lower “hole” in the “8”.

Figure 2: (1) The digit 1 was written with a slant (2) The second digit corresponds to an 8, but
could be misclassified as a 1.

The images can be represented as 28×28 matrices where each entry is the grayscale value of the
corresponding pixel. There are some classification methods that work directly with the matrices or
we may form 784-dimensional vectors by stacking the columns of the image matrices. Representing
the data as vectors this way allows us to use dimension reduction techniques based on linear algebra.
Many of the classification methods we use also require the data to be in the form of vectors.

1.2.2 Springleaf

Springleaf is a consumer finance company that uses direct mail marketing to reach its customers.
As part of its direct marketing efforts, the company uses a database of customers to create models
to predict which customers are most likely to use their services and respond to their marketing.

The database is large and unstructured with 1932 independent variables and a binary response
variable. There are 145,231 observations representing customers and the binary response variable
indicates whether the customer responded to direct marketing. Since the independent variables are
unknown, model-building is difficult and we are challenged to construct new meta-variables and
employ feature-selection methods to approach this dauntingly wide dataset.

Our task is to construct a prediction model using this data. Unlike the MNIST set, the Springleaf
set is not split into training and test sets so the models can be constructed using the entire set
or by splitting the dataset into randomly assigned test and training categories. Accuracy is to be
evaluated based on the model’s ability to correctly predict the response variable.

1.3 Classification

We now introduce the classification problem formally. Let X be a set of points xk ∈ Rm and C a
set of classes where each xk is in exactly one class. The number of classes is denoted with lower-case
c. Together with its class, each point can be represented by the ordered pair (xk, i), i ∈ C. The set
(T,C) is called the training set. The objective of classification is to use the training set to find a
function f : Rm → C such that f(x) = i for as many new points (x, i) as possible. The function f
is called a learning machine and a learning machine designed for classification is a classifier. Figure
3 illustrates the classification process.

1.3.1 Multiple Classification

Whenever a data set is partitioned into more than two classes, we face the problem of multiple
classification. There are classifiers such as nearest neighbor methods that are easily extended to
multiple classes, however some methods such as support vector machines are not extended so easily.
One way of constructing a multiple classifier is to construct multiple binary classifiers, the outputs
of which are combined in some way to produce a single output. Multiple binary classifiers may
also out perform their multiple-class counterparts. We use pairwise voting and one-vs-rest decision
rules to construct multiple classifiers.

Let (T,C) be a data set with |C| = c > 2 classes. We can construct a pairwise multiple classifier
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Figure 3: The Classification Procedure

f : Rm → C by constructing
(
c
2

)
binary classifiers fij : Rm → {i, j}, 1 ≤ i < j ≤ c with the decision

rule

f(x) = arg max
i∈C

{ (c2)∑
p=1

wpIi(fp(x))
}

(1)

where p ranges over the pairs of classes and wp are optional weights. Ii is the indicator variable
for the ith class. When all the weights are equal to one, the above expression is the decision rule
for simple plurality voting where x is assigned to the class to which a majority of the pairwise
classifiers have assigned it to. In the event of ties, other weighting schemes may have to be used.
[24]

The one-versus-rest method works by comparing class i with rest of the classes ¬i. f can
be constructed from the c learning machines fi : Rm −→ {i,¬i}, i = 1, . . . c where fi(x) =
arg max{i,¬i}{α(i), α(¬i)} where the α’s are scalars the generated by the decision function used
by fi. The multiple classifier can be constructed from the fi using the rule

f(x) = arg max
i∈C

{g(α(i))} (2)

where g is some weighting function. [24]
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2 Data Preprocessing and Visualization

2.1 Preprocessing the Springleaf Data

Springleaf’s dataset comes with 145,231 observation and 1932 anonymous data features. Anony-
mous data means that any personal identifiable information is removed from each observation and
each variable is unlabeled. The binary response variable target is 0 if that customer did not respond
to the mail offer and 1 means the offer was responded to.

We have divided the dataset into training and testing sets to construct our models. Two-thirds
of the data are used as training set and remaining third as the test set. There is about a 4:1 ratio
between the “not responded” and “responded” observations. There are 1876 numerical variables,
51 character variables, and 5 constant variables in the dataset. About 67% variables have 100
unique values or less so although some variables appear numeric they could be categorical.

There are three kinds of missing values in our dataset. “”, “NA” are the default missing values
for all input methods. “[]” and “-1” are the missing values for character variables and “-99999”,
“99”, “97”, “98”, etc. are the missing values for numerical variables. About 27% of our data set
is missing and about 25.3% variables have missing values. Every observation has three or more
variables with missing values and more than 60% of observations have ten or more missing values.
This added complexity necessitates the preprocessing of the data, which will be a crucial part of
this project.

In order to find a model to best predictive ability we must remove data that do not contribute
information useful for classification and to identify the most important variables. We group the
missing values “[]” and “-1” with “NA”. Some classifiers do not work with character variables so
they must be replaced with numeric values. For variables like gender, geological locations, we can
replace them with the level number of its values. For some other variables, such as phone number,
Social Security Number, we would group them as existed = 1, or non-existed = 0. Date variables
are strings, which do not provide much information to classify the response variable, therefore, we
have divided each date into 4 fields – Month, Day, Hour, pair-wise difference.

We have used three different ways to process the missing values in our dataset. The most
generally used is to replace missing values by its median value of each variable. One problem this
could cause is to introduce a dominant class when it really shouldn’t. To prevent this, we also tried
to fill missing values by a multinomial random variable with each value’s distribution probability.
For some methods, we also tried to regard missing values as a new group.

Figure 4: Data Preprocessing Flow Chart
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The following, also shown in Figure 4, is the process we have performed on our data for most
of the classification methods:

- Read in data, ”” and ”NA” string are treated as missing value by default.
- Replace ”[]” and ”-1” as missing values.
- Remove variable ”ID” and ”target”.
- Remove duplicate columns.
- Replace character variables by its level number.
- Process missing values – replace missing values by the median of existing values.
- Remove columns with very low variance.
- Normalize the cleaned-up data, or take the log of (1+ |x|) for different classification methods.

2.2 Visualizing MNIST with t-SNE

t-distributed Stochastic Neighbor Embedding, or t-SNE, is a method of visualizing high-dimensional
data by giving each data point a location in two or three-dimensional space. Even though t-SNE
can be used as a dimension reduction technique it is mostly used for visualization. In our project
we used t-SNE as both a dimension reduction (see next section) technique and to visualize the ten
classes in the MNIST set.

The method is divided into two main parts: The first part of the algorithm consists of con-
structing a probability distribution between the high-dimensional data points in such a way that
similar points have a high probability of being chosen for the embedding, while dissimilar points
have a small probability of being picked. To be more precise, let xi and xj be two high-dimensional
points, and define the conditional probability

pj|i :=
exp(−||xi − xj ||2/2σ2

i )∑
k 6=i exp(−||xi − xk||2/2σ2

i )

where pij is set as pij =
pj|i + pi|j

2
. Here pj|i is a conditional probability that xi would pick xj as

its neighbor if neighbors were picked in proportion to their probability density under the Gaussian
centered at xi. For similar points pj|i will be relatively high while for dissimilar points (far apart)
it will be almost infinitesimal. The bandwidth of the kernel, σi, is adapted to the density of the
data, where smaller values of σi are used in denser regions of the dataset.

In the second part, a similar process is done for the lower dimensional points (which are to be
constructed) in which the KullbackLeibler divergence is minimized between the two distributions
with respect to the locations of the points in the map. More precisely, for the lower-dimensional
counterparts yi and yj of xi and xj , respectively, a conditional probability qj|i is constructed.
In t-SNE a Student t-distribution with one degree of freedom is employed as the heavy-tailed
distribution in the low-dimensional map so that the probability qj|i is given by

qj|i :=
(1 + ||yi − yj ||2)−1∑
k 6=l(1 + ||yk − yl||2)−1

Finally t-SNE uses gradient descent to minimizes the Kullback-Leibler divergence between the
joint probabilities pij in the high-dimensional space and the joint probabilities qij in the low-
dimensional space. The Kullback-Leibler divergence between the two joint probability distributions
P and Q is given by

C = KL(P ||Q) =
∑
i

∑
j

pij log
pij
qij

.
In our experiments we used the MATLAB and R implementations of t-SNE. Figure 5 shows

output of the MNIST data set using the R version of t-SNE. Both the 2D and 3D visualizations
of the data show the differences in the ten different classes, but also show how some digits were
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Figure 5: a 2D and 3D visualization of the MNIST data set, respectively

inevitably placed in other clusters. These misclassified digits correspond to distorted digits that in
some cases are even difficult for humans to correctly identify.

In an attempt to better separate all ten clusters for visualization, we also used more sophisticated
variations of t-SNE, which include parametric t-SNE [26], and kernel t-SNE [7], but these methods
only gave small improvements in plots that were not significantly better than t-SNE. In addition to
this, t-SNE is a tool for visualization rather than dimensionality-reduction. We also tried combining
t-SNE with other classifier methods, but our experiments did not provide good results.

2.3 Dimension Reduction

Dimension reduction methods map high dimensional data into a lower dimensional space while
retaining the most important variables under some criteria. Dimension reduction helps mitigate
computational costs and is particularly useful in data visualization. It has also been widely adopted
to improve performance of various machine learning models [2, 20]. The MNIST data set in our
case has 784 dimensions, which is difficult to deal with.

Formally let X ∈ Rm×n be a data set where the column vectors xk ∈ Rm k = 1, . . . , n represent
observations in some m-dimensional space. The goal of dimension reduction is to find a lower
dimensional representation of the data that preserves or enhances some of its features. For this
reason, dimension reduction is often referred to as feature extraction and involves finding a linear
transformation W ∈ Rd×m d < m such that Y = WX is a representation of the original data that
optimizes some property. A learning machine then can be trained on the set (Y,C) and classification
of a new point x accomplished by classifying its image y = Wx.

Some dimension reduction methods such as discriminant analysis use the class information in the
training set. Such methods are “supervised” in the sense that they require class information in the
training set to be observed by the analyst. “Unsupervised” methods such as principle component
analysis do not require class information and can be applied regardless of prior knowledge about
class membership.

Mechanically,

WX =

− wT1 −
...

− wTm−

X =

 w
T
1 X
...

wTmX


The vectors wTi X are called features and are the projection of the data X onto the ith component
of the transformation W . [13]

2.3.1 Principal Component Analysis

Dimension reduction is a process which maps data to a lower dimensional space while retaining
the most important variables. Dimension reduction helps mitigate computational costs and is
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particularly useful in data visualization. It has also been widely adopted to improve performance
of various machine learning models [2, 20]. The MNIST data set in our case has 784 dimensions,
which is difficult to deal with. Preprocessing with the data using appropriate dimension reduction
methods appears to be helpful. One important dimension reduction method we have studied is
Principal Component Analysis (PCA), which has successful application in pattern extraction from
high dimensional data [10].

In this section, we will give a short introduction to PCA. The basic idea of PCA is projecting the
data to a low dimensional space by maximizing a certain objective function, which is the variance
in the case of PCA [11].

Given n points xi ∈ Rm, we would like to find a linear transformation W ∈ Rd×m (d < m)
that maps x to y = Wx. Without loss of generality, we assume

∑
xi = 0. If this is not true, we

can always centralize the data by Ã =
∑n

i=1(xi − µ)(xi − µ)T where µ = 1
n

∑
xi. y is the low

dimensional representation of the original data x and we have the recovered data x̃ = W T y [27].
The goal of PCA is to find the mapping W that minimize the total squared distance between the
original data (x) and the recovered data x̃. This can be done by solving a quadratic problem

min
W∈Rd,m

n∑
i=1

||xi −W TWxi||2. (3)

Since W is orthonormal, we have

||x−W TWx||2 = ||x||2 − xTW TWx

= ||x||2 − Tr(WxXTW T ), (4)

where WW T = I is used. Therefore, the optimization problem reduces to

max
W∈Rd,m

Tr(W
n∑
i=1

xix
T
i W

T ). (5)

The matrix A =
∑n

i=1 xix
T
i is symmetric and can be decomposed as A = V DV T , where D is

diagonal and V TV = V V T = I. The diagonal elements of D are the eigenvalues of A and the
corresponding eigenvectors are stored in V . Let v1, v2, . . . , vk be k eigenvectors of A associated
with the largest k eigenvalues. The solution of PCA is thus W = [v1, v2, . . . , vk]. In this study, we
use singular value decomposition (SVD) to perform PCA.

As an example of data visualization, Figure 6 plots digit 0 to 9 from MNIST training set
respectively featuring the top two PCA components.

2.3.2 Classwise PCA

For digit recognition, conventionally, PCA is performed on the whole training data set and the test
data is projected to the top k principal components [28]. This PCA method can be also called global
PCA. In this study, we present an alternative approach which we call local PCA. In the local PCA,
PCA is performed on the individual groups of the training data and the training data is projected to
the subspace according to its group. Intuitively, this approach extracts distinguished features from
each group which helps separate the groups better. As a result, it will improve the performance
of the classifiers (KNN, SVM, etc.). Specifically, in MNIST data, we obtain 10 different subspaces
(digit 0, 1, . . . , 9 respectively), each group can have different number of PCA components. If we
use SVM as classifier, we would train 10 models based on the 10 subspaces (one-vs-rest method).
In the classification stage, the test data is projected to the 10 different subspaces before being sent
to the 10 trained SVM models [12]. Our method shows improved results compared to conventional
method. Detailed results can be found in 6.4.2.
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Figure 6: The new coordinates of digit 0, 1, 2, 3, 4, 5, 6, 7, 8, and digit 9 corresponding to the top
2 principle directions

3 Instance-based Classifiers

3.1 Methods description

In this section we will be talking about the instance-based classifiers we used to classify the digits.
Instance-based classifiers are lazy learners. These algorithms, instead of a generalized classifica-
tion, compare each new instance of data with the instances seen during training and hypothesize
accordingly. The instance-based methods we have tried are k-nearest neighbor method, its variant
weighted k nearest neighbor, k-means and its variant local k-means.

3.2 Nearest Neighbors Methods

The nearest neighbor (NN) method works by taking an unclassified point x and assigning it to the
class of the nearest point in the training set according to some distance metric d. Here we take
d(x, y) =

√
(x− y)T (x− y) to be the Euclidean distance between the points x and y.

The k-nearest neighbor (kNN) method extends this idea by using the classes of local points to
classify x. Let Nk(x) = {x1, . . . , xk} be the set of k closest points and let dj = d(x, xj) be the
distance from xj to x, indexed such that dj < dj+1. The kNN rule assigns x to the class to which
the majority of the points in Nk(x) belong. If we want to give more importance to points that
are closer to x, we may assign weights to the points in Nk(x) based on their distance from x. The
decision rule for weighted k-nearest neighbors (WkNN) can be expressed as

f(x) = arg max
i∈C

{
k∑
j=1

δi(xj)wj} (6)

where δi = 1 if xj ∈ i and 0 otherwise. x is assigned to the class that maximizes this sum. When
wi = 1 for all i, the above reduces to kNN [8]. We test several different weighting schemes, which
are shown in the following table.

wj =
dk−dj
dk−d1 proportional weights [8]

w′Dualj = wj ×
(
dk+d1
dk+dj

)
Dual weighted kNN (DWkNN) [8]

w′′j = 1√
2π
e−

D2
j
2 Gaussian weighted [9]
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In the Gaussian weights w′′j , Dj =
dj
dk

is the distance from xj to x scaled by the largest distance
in the set of neighbors.

3.3 Local k-means

The k-means rule is equivalent to the NN rule applied to the set of class means {µi}i∈C , that
is new points are assigned to the class of the nearest class center. k-means generally gives good
results when the classes are well separated as in Figure 7A, where the new point (shown in green) is
assigned to the pink class. However, many data sets have classes that are not well-separated or are
non-convex. In non-convex sets the class mean µi may not be a good measure of the center. Figure
7B shows how using the class center may result in misclassification under the k-means rule. In this
example, the new point belongs to the blue class but the red class center is closer and k-means
would incorrectly assign it to the red class.

(a) Well-separated classes (b) Non-convex classes

Figure 7: k-means

The above discussion suggests that in order to apply a k-means method to a non-convex data
set we must take into account the local structure of the data. The local k-means rule does this by
using the centers of sets of points near the test point.

Formally, let Nk(x, i) be the set of k nearest points to x belonging to the ith class and let µk,i
be its center. Under the local k-means rule, x is assigned to the class of the closest µk,i. This is
equivalent to the NN rule applied to a set {µk,i}i∈C . That is, a new observation x will be assigned
to a class according to the rule

f(x) = argmin
i∈C

||x− µk,i|| (7)

In less technical terms, to apply local k-means one shall: for each class (1) find the kNNs of
the new observation (2) compute the (local) centers of each set of kNN, (3) compute the distance
between the new observation and each of the local centers, and finally (4) assign the new observation
to the class of the kNN which gives the closest local center. Figure 8 shows how local k-means
correctly assigns the new point.

Figure 8: Local k-means with non-convex classes
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3.3.1 MNIST Results

We applied kNN, k-means and the three versions of WkNN over a range of k. Classification accuracy
decreased as k grew large (> 20). Among instanced based method, local k-means performed the
best. When applied to the MNIST data set and without any preprocessing, local k-means gave
an error of 1.75% with k = 14. By deskewing the data error was reduced to 1.17%, but with k =
10. Summary results using instance based methods in combination with different dimensionality
reduction methods are shown in Table 2

Method Error k

local k-means (deskewed) 1.17% 10

local k-means 1.75% 14

kNN 2.95% 3

WkNN 2.76% 8

DWKNN 3.09% 1

Gaussian WkNN 2.83% 3

tsne + local kmeans 2.76% 10

Table 2: Summary of Instance based methods on the MNIST data set.

3.3.2 Springleaf Results

We have used kNN on the Springleaf data. From the Figure 9, we can see that for every target = 1
(in Red) observation, it is surrounded by target = 0 (in Black) observations, which leads us to
believe that the accuracy on the kNN method will not be very high.

Figure 9: kNN Neighbors on 2 Dominant PCs

The following figure shows the result from kNN algorithm for each k we picked. From the
figure, we can see the higher the k, the higher the overall accuracy, but the less Target =1 can be

12



identified.

Figure 10: kNN Classification Results

The weighted kNN algorithm runs a lot slower than some implementation of kNN, it takes hours
to complete the prediction. However, the result is not much better. For k=7, the accuracy of the
prediction increased by 1.7%.

Figure 11: Weighted kNN Classification Results
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4 Discriminative Methods

4.1 Linear Discriminant Analysis

For the purposes of classification, it is desirable to have data where the class members are clustered
closely together but the different class clusters are relatively far apart. LDA makes use of two
quantities that together capture the degree to which this property is present in the data set. Let
ni be the size of the ith class and n the size of the whole dataset, where n = n1 + · · · + nc. The
class mean µi and grand mean µ are defined respectively:

µi =
1

ni

ni∑
j=1

xj

µ =
1

n

n∑
j=1

xj

Within-class scatter captures the spread of the points in the ith class about the class mean µi for
each class while between-class scatter captures the spread of the class means about the grand mean
µ. The ratio between between- and within-class scatter measures the separation property. LDA
seeks to find a transformation that maximizes this ratio in the lower dimensional space. Define the
within-class scatter matrix

Sw =

c∑
i=1

ni∑
j=1

(xj − µi)(xj − µi)T (8)

and the between-class scatter matrix

Sb =
c∑
i=1

ni(µi − µ)(µi − µ)T (9)

We seek a transformation W that will maximize the ratio

J(W ) =
|W TSbW |
|W TSwW |

(10)

The solution to this problem is given by the solution to the eigenvalue problem SbW = λSwW , that
is, W consists of the eigenvectors of the matrix S−1

w Sb that correspond to the non-zero eigenvalues.[6]
Since Sb is the sum of rank-one matrices, Sb has rank of at most c− 1. There are at most c− 1

non-zero eigenvalues of S−1
w Sb which limits the dimension of the transformed data to at most c− 1.

[6][16][15] However, we try to make use of the zero eigenvalues to try and extend the number of
features. See Results at the end of the section.

In practical applications with high dimensional data sets the matrix Sw may be singular, as is the
case with our data. One way of overcoming the singularity issue is to apply a dimension reduction
method such as PCA before using LDA. Another approach called regularization substitutes the
matrix Sw with

S′w = Sw + βI

where β > 0 is a “bump” term that makes S′w nonsingular for sufficiently large β. [15]

4.2 Nonparametric Discriminant Analysis

Nonparametric discriminant analysis (NDA) uses a formulation of the within class scatter matrix
that utilizes the local structure of the data. Let x be a point and µk,i(x) is the local center of the
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closest k points to x from class i. Define dk,i(x) = d(x, µk,i(x)). The NDA between class scatter
matrix, introduced by [16] is defined by

Sb =
∑
i∈C

ni∑
j=1

∑
6̀=i
wj`i(xj − µk,`(xj))(xj − µk,`(xj))T (11)

The second sum is taken over all points in the ith class. For each point in class i, the third sum
is the sum of squared distances between the point and the local k centers of the rest of the classes
` 6= i. This matrix captures the scatter between the points in a class with the rest of the classes.
The weight term is given by

wj`i =
min {d`,k(xj), di,k(xj)}
d`,k(xj) + di,k(xj)

(12)

which is the ratio of the smallest of the two distances to their sum.[16]
NDA has several advantages over LDA. The matrix Sb is usually nonsingular. Another is that

S−1
w Sb has more than c−1 nonzero eigenvalues, so more features can be extracted using NDA.[16][6]

4.3 LDA/QR

LDA is an alternative to PCA for dimensionality reduction that was considered for the MNIST
data set, which results in an eigen decomposition problem. As discussed previously, applying LDA
to the MNIST data set is not feasible because of the singularity of the scatter matrices. Another
alternate version to classical LDA is LDA/QR [30], which is described in two main steps. In the
first step, LDA/QR maximizes the separation between different classes by applying a QR decom-
position to a small sized matrix. In the second step, LDA/QR incorporates both between-class and
within-class information by applying LDA to a “reduced” version of the scatter matrix obtained
from the first step [29]. More formally, let X ∈ Rm×n be the data matrix, where each column
consists of a m−dimensional observation, and let ni be the size of each class, 1 ≤ i ≤ c, where c is
the number of classes. Define between-class, within-class, and total scatter matrices Sb, Sw, and St,
respectively so that Sb = HbH

T
b , Sw = HwHw, and St = HtH

T
t , where [29]:

Hb = [
√
n1 (µ1 − µ) , · · · ,

√
nc (µc − µ)] ∈ Rd×c

Hw = X − [µ1e
T
1 , · · · , µceTc ] ∈ Rd×n, and

Ht = X − µeT ∈ Rd×n.

(13)

Here ei = [1, · · · , 1]T ∈ Rni×1, e = [1, · · · , 1]T ∈ Rn×1, µi is the mean of the ith class, and µ is the
global mean. Then we have that St = Sb + Sw. In the first stage of LDA/QR the algorithm aims
to solve the optimization

G = argmin
GTG=I

tr
(
GTSbG

)
which can be solved by either solving the eigenvalue problem on Sb or by finding the QR decom-
position of the centroid matrix C = [µ1, µ2, · · · , µc] [31]. In the latter case, we decompose C as
C = QR, where Q ∈ Rn×c with orthonormal columns and R ∈ Rc×c is an upper triangular matrix.
Letting G = QV solves the optimization problem for any orthogonal matrix V . The Algorithm can
be summarized as follows:

LDA/QR

1. Construct the centroid matrix C.
2. Obtain the QR decomposition of C as C = QR, where Q ∈ Rn×c and R ∈ Rc×c.
3. Let Y := HT

b Q and Z := HT
t Q.
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4. From step 3, construct B := Y TY and T := ZTZ, the “reduced between-class scatter matrix”
and “reduced total scatter matrix”, respectively.
5. Compute the c eigenvectors vi of (T + αIc)

−1B with decreasing eigenvalues.
6. Store the reduced vectors in G, where G := QV and V = [v1, · · · , vc].

The main advantages of LDA/QR over LDA is that (1) it has much lower cost in time and space,
(2) bypasses the singularity of the scatter matrix, and (3) produces c rather than c− 1 dimensions
after dimensionality reduction [30].

4.3.1 MNIST Results

Although LDA and LDA/QR seemed like promising dimensionality reduction methods for the
MNIST data set, we found that the dimensionality reduction was too aggressive by compressing
the current space to only 10 dimensional space. LDA works well with linearly separable (classes
that are separable by a line or plane) data sets and our work here suggests that MNIST does not
fall in this category. In later sections we discuss the use of dimensionality reduction methods in
conjunction with classifications methods and show LDA/QR results.

4.4 2D-LDA: Two Dimensional LDA

When working with images, the choice must be made to represent the images as vectors or to work
directly with the image matrices themselves. 2D-LDA is a version of LDA which uses the images
matrices directly. All other methods we examined use vector representation.

Let Ak be the m×d matrix representing the kth image in the data set, where m = d = 28. The
class center for the ith class is Āi = 1

ni

∑
k∈iAk where the mean is taken element-wise over the set of

image matrices. Similarly let Ā be the grand mean of all images in the dataset. Ā = 1
n

∑c
i=1

∑
k∈iAk

The between-class scatter is defined to be the matrix

Sb =
c∑
i=1

ni(Āi − Ā)T (Āi − Ā) (14)

and the within-class scatter

Sw =

c∑
i=1

ni∑
j=1

(Aj − Āi)T (Aj − Āi) (15)

Classification is done with nearest-neighbors after the transformation is applied to the data. kNN is
implemented using matrix norms in place of Euclidean distance. The p-norm for an m×m matrix
A is

‖A‖p =

(
m∑

i,j=1

|aij |p
)1/p

We use the L1-norm and L2-norm and the Fisher vector norm, which is the sum of squared Eu-
clidean distances of the column vectors of two matrices. [14]. Figure 12 shows the results of kNN
classification after the application of 2D-LDA. The best results were achieved using the L2 norm.

4.5 Springleaf Visualization with LDA

By applying LDA, we project all the points on to one dimension space. After projecting, the spread
of points in each group is shown in Figure 13.

The two groups in one dimension both approximately follow normal distributions. Unfortu-
nately, the projected means of each group are relatively close to each other comparing with their
spreads. We can expect the two groups to significantly overlap in one dimension space. Generally,
similar to PCA, LDA can not distinguish the two groups in a low dimension space. It implies

16



Figure 12: Results of 2D-LDA classification with k nearest neighbors

Figure 13: LDA

that our data is not linear separable and that we need to seek other nonlinear methods to do the
classification.
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5 Statistical Methods

5.1 Naive Bayes

The Naive Bayes classifier is based on Bayes’ theorem with the assumption of independence be-
tween every pair of predictors. In a simple term, a Naive Bayes classifier assumes that the features
in a dataset are mutually independent. For example, an animal that looks like a horse (feature 1),
and with black and white stripes (feature 2) may be considered as a zebra. Even if these features
depend on each other and/or depend on the existence of the other features, all these attributes
independently contribute to the probability that this animal is a zebra. This is why it is known as
“Naive” [18].

In order to understand Naive Bayes Classifiers [17], we need to understand conditional probabil-
ity and Bayes Theorem first. Conditional probability is a probability that something will happen,
given something else has already happened. We can describe the probability that event X will
happen given event Y has happened as

P (X | Y ) =
P (X ∩ Y )

P (Y )

And Bayes’s Theorem gives the relationship between P (X|Y ) and P (Y |X):

P (X | Y ) =
P (Y | X)P (X)

P (Y )

Which provides a way of calculating the posterior probability, P (Y | X), from P (Y ), P (X),
and P (X | Y ). Naive Bayes classifier assumes that the effect of the value of a predictor (X) on a
given class (Y ) is independent of the values of other predictors.

This assumption of independence among predictors is called class conditional independence. It
reduces the complexity of Bayes’ theorem and dramatically reduces the number of parameters to
be estimated when modeling P (X | Y ). Consider the case that X = (X1, X2), with the conditional
independence assumption,

P (X | Y ) = P (X1, X2 | Y )

= P (X1 | X2, Y )P (X2 | Y )

= P (X1 | Y )P (X2 | Y )

More generally [19], when X contains n attributes which are conditionally independent of one
another given Y , we have

P (X1, . . . , Xn | Y ) =
n∏
i=1

P (Xi | Y )

Notice that when Y and the Xi are boolean variables, we need only 2n parameters, instead of
the original 2(2n − 1), to define P (Xi = xik | Y = yj) for the necessary i, j, k.

Given a class variable Y and a dependent feature vector X1 through Xn, Bayes’ theorem states
the following relationship:

P (Y | X1, . . . , Xn) =
P (Y )P (X1, . . . Xn | Y )

P (X1, . . . , Xn)
(16)

Using the naive independence assumption

P (Xi|Y,X1, . . . , Xi−1, Xi+1, . . . , Xn) = P (Xi|Y ),

We can rewrite the previous expression (16) as
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P (Y | X1, . . . , Xn) =
P (Y )

∏n
i=1 P (Xi | Y )

P (X1, . . . , Xn)

Since P (X1, . . . , Xn) is constant given from the input, we can use the following classification
rule:

P (Y | X1, . . . , Xn) ∝ P (Y )
n∏
i=1

P (Xi | Y )

which can be simplified to the following:

Ŷ = arg max
Y

P (Y )

n∏
i=1

P (Xi | Y ) = arg max
Y

logP (Y ) +

n∑
i=1

logP (Xi | Y )

Please also note that for each predictor Xi given Y , we generally assume that it is normally
distributed, but we can also use kernel distribution to make it more flexible at some expense of speed.

Let’s understand the classifier with an example [22]. For example, we have 1000 pieces of fruits
(Y ), consisting of Banana (Y = 1), Orange (Y = 2) and some Other fruit (Y = 3). We know
three features (Xi) about each fruit: (i) whether it is Long (X1); (ii) whether it is Sweet (X2); and
(iii) If its color is Yellow (X3). Our training set were provided as table below, and we will use this
to predict any type of new fruit as we encounter.

Type Long Not Long Sweet Not Sweet Yellow Not Yellow Total

Banana 400 100 350 150 450 50 500

Orange 0 300 150 150 300 0 300

Other Fruit 100 100 150 50 50 150 200

Total 500 500 650 350 800 200 1000

Table 3: Naive Bayes Fruit Example ”Traing set” Data

Here’s what know about our fruit based on the ”training set”:

P(Banana) = P(Y = 1) = 0.5 (500/1000)

P(Orange) = P(Y = 2) = 0.3

P(Other Fruit) = P(Y = 3) = 0.2

p(Long) = P(X1 = 1) = 0.5

P(Sweet) = P(X2 = 1) = 0.65

P(Yellow) = P(X3 = 1) = 0.8

P(Long|Banana) = P(X1 = 1|Y = 1) = 0.8

P(Long|Orange) = P(X1 = 1|Y = 2) = 0

....

P(Yellow|Other Fruit) = P(X3 = 1|Y = 3) = 0.25

P(Not Yellow|Other Fruit) = P(X3 = 0|Y = 3) = 0.75

Now we were given a new fruit that is Long, Sweet, and Yellow. What kind of fruit is it?
We can calculate the probabilities of whether it is Banana, Orange or Other fruit, and ”classify”
the unknown fruit to the class that has the highest probability based on our prior evidence.
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P(Banana|Long, Sweet and Yellow) = P(Y = 1|X1 = 1, X2 = 1 and X3 = 1)

=
P(Long|Banana) * P(Sweet|Banana) * P(Yellow|Banana) * P(banana)

P(Long) * P(Sweet) * P(Yellow)

=
P(X1 = 1|Y = 1) ∗ P(X2 = 1|Y = 1) ∗ P(X3 = 1|Y = 1) ∗ P(Y = 1)

P(X1 = 1) ∗ P(X2 = 1) ∗ P(X3 = 1)

= 0.8 ∗ 0.7 ∗ 0.9 ∗ 0.5/P(evidence)

= 0.252/P(evidence)

P(Orange|Long, Sweet and Yellow) = P(Y = 2|X1 = 1, X2 = 1, X3 = 1) = 0

Since we know Oranges are never long in all the fruit that we have.

P(Other Fruit|Long, Sweet and Yellow)

=
P(Long|Other fruit) * P(Sweet|Other fruit) * P(Yellow|Other fruit) * P(Other Fruit)

P(evidence)

=
P(X1 = 1|Y = 3) ∗ P(X2 = 1|Y = 3) ∗ P(X3 = 1|Y = 3) ∗ P(Y = 3)

P(evidence)

= (100/200 ∗ 150/200 ∗ 50/150 ∗ 200/1000)/P(evidence)

= 0.01875/P(evidence)

Because (0.252 >> 0.01875), we classify the Sweet/Long/Yellow fruit as likely to be a Banana.

5.1.1 Results based on Springleaf Data

While the Naive Bayes classifier runs very fast compared with other methods we have tried, the
results are not very satisfactory. We randomly picked 2/3 of the training data as the training set
and 1/3 as the testing set and achieved an average error rate of roughly 27.2% over 4 trials. One
of the sample confusion tables is shown below, we can see that the prediction on target 1 is only
about 40.5% correct.

truth

predict 0 1

0 31260 7309
1 5859 3983

Table 4: Naive Bayes Confusion Table

5.2 Maximum A Posteriori Probability

In Bayesian statistics, a maximum a posteriori probability (MAP) estimate is a mode of the pos-
terior distribution. According to wikipedia,” the MAP can be used to obtain a point estimate of
an unobserved quantity on the basis of empirical data. It is closely related to Fisher’s method of
maximum likelihood (ML), but employs an augmented optimization objective which incorporates
a prior distribution over the quantity one wants to estimate.”

MAP is good for classification because it can to find the optimal point, line or hyperplane
that separate observations to different groups. To understand MAP, we briefly review Bayes’ rule.
We can calculate the prior probabilities from the frequencies of Group A(target = 0) and Group
B(target = 1). From training data there are n observations, n1 0s and n2 1s so

P (A) =
n1

n
; P (B) =

n2

n
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Given another single event Y, the conditional odds of A and B are P (A|Y ) and P (B|Y ). So the
probability of Y is:

P (Y ) = P (Y |A)P (A) + P (Y |B)P (B)

If we want to know the test observations are belong to group A or group B, we need to calculate
the probability of A or B, given Y. Here Y is referred to the new event we sample the customer
from population.
So, we have:

P (A|Y ) =
P (Y |A)P (A)

P (Y |A)P (A) + P (Y |B)P (B)

P (B|Y ) =
P (Y |B)P (B)

P (Y |A)P (A) + P (Y |B)P (B)

In the two equations, we already know P(A) and P(B) from the training data. And we still need
to have P (Y |A) and P (Y |B) to calculate P (A|Y ). Assume each group are normal distribution, so
we have probability density functions

P (A|Y ) =
1

σ1

√
2π
e
− (y−µ1)

2

2σ1
2

P (B|Y ) =
1

σ2

√
2π
e
− (y−µ2)

2

2σ2
2

Above µ1 and σ1 for Group A, µ2 and σ2 for Group B.
For each test observation, we compare P (A|Y ) and P (B|Y ), If P (A|Y ) > P (B|Y ), we assign it

to Group A. If P (A|Y ) < P (B|Y ), we assign it to Group B. If If P (A|Y ) = P (B|Y ), we assign it
randomly or using other method.

In order to simplify, we rewrite the two equations to one using ratio.

P (A|Y )

P (A|Y )
=
e
− (y−µ1)

2

2σ1
2

e
− (y−µ2)2

2σ2
2

By extension from this simple two dimensions example, we have formula for k multiple groups.

P (Ei|Y ) =
e
− (y−µi)

2

2σi
2 ni

k∑
i=1

e
− (y−µi)

2

2σi
2 ni

5.2.1 Results based on MNIST Data

The results of Naive Bayes and MAP can be found in Figure 14
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Figure 14

5.3 Logistic Regression

In statistics, logistic regression is a regression model where the dependent variable is categorical. In
our case, the dependent variable only has two categories, which are 0 and 1. We call this a binary
case. If the dependent variable has more than two categories, it is referred to as multinomial logistic
regression.

Logistic regression measures the relationship between the categorical dependent variable and
one or more independent variables by estimating probabilities using a logistic function, which is
the cumulative logistic distribution. The binary logistic model is used to estimate the probability
of a binary response based on one or more predictor variables.

Logistic regression can be seen as a special case of generalized linear model and thus analogous
to linear regression. The model of logistic regression is based on different assumptions about the
relationship between dependent and independent variables. First, the conditional distribution y | x
is a Bernoulli distribution rather than a Gaussian distribution, because the dependent variable is
binary. Second, the predicted values are probabilities are restricted to (0,1) through the logistic
function.

Before introducing logistic model first define the log odds ratio. For a binary logistic model, we
have two categories 0 and 1. P (y = 1|X) is the probability that we get category 1 and P (y = 0|X)
is the probability that we get category 0. The relation P (y = 0|X) + P (y = 1|X) = 1 holds. Then

f(x) = logit(Y ) = log
P (y = 1|X)

1− P (y = 1|X)
= log

P (y = 1|X)

P (y = 0|X)
(17)

The expression in Equation (17) is called the log odds ratio. Based on this definition, we now
introduce the logistic model. Suppose our independent variables are x1, x2, ..xd, we define

z = f(X) = b+ w1x1 + w2x2 + ...+ wdxd = wTX + b

where w = [w1, w2, ..., wd] and X = [x1, x2, ..., xd]. In order to turn this into a probabilistic
statement, we use a function whose target is restricted [0,1]. The logistic function

σ(z) =
1

1 + e−z
(18)

where z = wTX + b is such a function. Equation (18) is called logistic function. As z goes from
−∞ to ∞, σ(Z) goes from 0 to 1, which is the probability of particular outcomes. Based on the
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values of probability, people can select different thresholds that will categorize each observation
into different groups and the value 0.5 is a typical one. Based on the predicted categories, we can
compare the original data with predicted ones. As a result, the accuracy of the logistic regression
model can be calculated.

5.3.1 Results based on Springleaf Dataset

In this part, we will show the result of logistic regression based on both original dataset and dataset
based on principal component analysis. In the analysis, we divided our data into two parts: 2/3
are treated as train data, and 1/3 are treated as test data. After doing these separately, we will
compare the two situations and give a conclusion.

ROC curve and AUC

First, we would like to introduce ROC curve and AUC, which are two important concepts and
will be used in the several parts in our analysis.

Receiver operating characteristic, or ROC curve, is a graphical plot that illustrates the perfor-
mance of a binary classifier system as its discrimination threshold is varied. This curve is built by
plotting the true positive rate (TPR) against the false positive rate (FPR) at different threshold
values.

The true positive rate (TPR) is called sensitivity, and it measures the proportion of positives that
are correctly identified as such. False positive rate (FPR) is also called specificity and measures
the proportion of negatives that are correctly identified as such. Thus sensitivity quantifies the
avoiding of false negatives, as specificity does for false positives. Table 5 shows the definition of
true positive and false positive.

Table 5: Contingency Table

True Condition
Positive Negative

Predicted
Condition

Positive True Positive
False Positive
(Type I error)

Negative
False Negative
(Type II error)

True Negative

Generating a ROC curve is simple: write the probability density for belonging to the class as
a function of a threshold parameter T , as P1(T ) . Write the probability density for not belonging
to the class as P0(T ) . The false positive rate FPR is given by

FPR(T ) =

∫ ∞
T

P0(T ′)dT ′

and the true positive rate is

TPR(T ) =

∫ ∞
T

P1(T ′)dT ′

The ROC curve plots parametrically TPR(T) versus FPR(T) as a function of T. The optimal point
on the ROC curve is (FPR, TPR) = (0,1). No false positives and all true positives which is ideal.
An essential observation is that the curve is by definition monotonically increasing.

FPR(θ) < FPR(θ′)⇒ θ > θ′ ⇒ TPR(θ) ≤ TPR(θ′)

All those features combined make it apparently reasonable to summarize the ROC into a single
value by calculating the area of the convex shape below the ROC curve this is the AUC. The closer
the ROC gets to the optimal point of perfect prediction the closer the AUC gets to 1.
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Results Based on Original Dataset

In this Springleaf dataset, our dependent variable ’target’ has two values: target = 0 means
people will not accept the company’s offer, and target = 1 means people will accept the offer. So
our problem is actually a binary logistic regression case. It is reasonable if we plan to use logistic
regression on our dataset.

Figure 15 shows the distribution of prediction probability for each data point. We can see most
of the points are located between 0 and 0.5, and a small proportion of points locate between 0.5
and 1. It makes sense because in our data, the number of 0 is much more than number of 1. In
order to see how good the prediction is, we need some more figures, tables and deep analysis.

Figure 15: Predicted Probability

By default, people use 0.5 as the cutoff for classification in logistic regression, which means in
our case, the points with probabilities in the interval (0,0.5) belong to category 0 and the points
with probabilities in interval (0.5,1) belong to category 1. Based on this standard, we get the
confusion matrix which is as shown in Table 6.

According to the confusion matrix, we get the predicting accuracy is 78.60%. We could also get
the accuracy for the two categories separately, as shown in Table 6, the accuracy for category 0 is
94.25% and the accuracy for category 1 is 27.40%.

Table 6: Confusion Matrix

Predicted Accuracy
0 1

True
0 34943 2129 94.25%
1 8232 3107 27.40%

Actually, we can choose what value should be used in practice. So we can try different cutoffs
and see which one will give us the highest accuracy. Based on this, we get Figure 16. This covers
a range of cutoffs from [0.4, 0.6]. The results show that when we pick cutoff at 0.5, the accuracy is
the best.

We also have the ROC curve as shown in Figure 17. The area under the curve is : 0.7608.
Accuracy is measured by the area under the ROC curve. An area of 1 represents a perfect

test; an area of .5 represents a worthless test. A rough guide for classifying the accuracy of a
diagnostic test is the traditional academic point system: .90− 1.0 =excellent (A); .80− .90 =good
(B); .70− .80 =fair (C);.60− .70 =poor (D); .50− .60 =fail (F).
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Figure 16: Accuracy vs. Cutoff
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Figure 17: ROC Curve Based on Original
Dataset

Results Based on PCA

Since we have too many features in our original dataset, we consider to use different principal
components to see whether less components will give us higher accuracy.

Figure 18 is a plot of number of principal component versus accuracyy. The largest number of
principal components we choose is 320, which explained 90% of the total variation. Overall, we can
see a trend that the more principal component, the more accurate our predictions are. The best
result we have is 78.5%.

Figure 19 shows several different accuracies: green line is accuracy for target = 0, purple line
is accuracy for target = 1, red line is overall accuracy, and blue line is area under the ROC curve.
Through these lines, we also see the trend: the more components we have in the model, the better
results we will get.

As a result, we conclude for logistic regression, the result based on original data (accuracy is
79.2) is better than result based on dataset obtained by PCA (best accuracy is 78.5%). Overall,
logistic regression performs well on Springleaf dataset.

Figure 18: Accuracy based on PCA

Figure 19: Accuracy + AUC
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5.4 Using LDA and QDA as Classifiers

In the previous section, we have discussed LDA as dimension reduction method. In this section,
we will give a short introduction of LDA and QDA as classifiers. LDA and QDA are very similar
to each other, except for LDA we assume each group has the same covariance while for QDA each
group has its own covariance.
To use LDA and QDA as classifiers, one commonly used approach is the naive Bayesian classifier.
Consider the conditional distribution of the data P (X|l = i) for each class i, the predictions can
be obtained by using Bayes’ rule

P (l = i|X) =
P (X|l = i)P (l = i)

P (X)
=

P (X|l = i)P (l = i)∑
j P (X|j = i)P (j = i)

,

where we use the posterior P (l = i|X) to predict if l belongs to class i, and P (l = i) is the prior
probability of class i. P (X|l = i) is the probability of x when it belongs to class i. We predict the
test data to the class i which maximizes the above conditional probability [5].

Assume P (X|l) for LDA and QDA is a multivariate Gaussian distribution with density

f(X|l = i) =
1

(2π)p/2|Σi|1/2
e−

1
2

(X−µi)TΣ−1
i (X−µi)

The prior probability of class i is P (l = i),
∑c

l=1 P (l = i) = 1. P (l = i) is estimated simply by
empirical frequencies of the training set

̂P (l = i) =
ni∑
i ni

where ni is the number of class-i samples.
Using Bayes rule, we can obtain the optimal function

argmax
i
P (l = i|X) = argmax

i
P (X|l = i)P (l = i)

5.5 Mathematical formulation of the QDA classifier

In QDA, the covariance of each group is different from each other. Estimate the covariance matrix
Σi separately for each class i, i = 1, 2, . . . , c [21]. πi is an estimator of P (l = i) .

Following similar derivation from LDA, the Quadratic discriminant function is

δi(x) = −1

2
log |Σi| −

1

2
(x− µi)TΣ−1

i (x− µi) + log πi

and the classification rule is
argmax

i
δi(x),

where the decision boundary is quadratic.

5.5.1 MNIST results

We have applied both LDA and QDA on the MNIST data. Since the original MNIST data has
singularity issue when we apply LDA/QDA directly, we use PCA to regularize the data first. When
we use 250 PCA components and LDA as the classifier, the misclassification error is 0.125 based
on original data and the misclassification error is 0.08 based on deskewed data. When using 250
PCA components and QDA as the classifier, the misclassification error is 0.0649 based on original
data and the misclassification error is 0.0516 based on deskewed data. Our study shows that QDA
performs better than LDA on MNIST data set. However, QDA has more parameters to tune and
is harder to train.
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6 Support Vector Machines

6.1 The linearly separable case

A data set in R2 is said to be linearly separable if there exists at least one line in the plane that
can separate one class of the data set on one side of the line and the other class on the other side
of the line. If the data set is multidimensional, then a hyperplane is used. Figure 20(a) shows an
example of a linearly separable data set.

Figure 20: (a) A data set with two classes, red and cyan. The data set is linearly separable because
both classes can be separated by a line. (b) A new observation, shown in gray, becomes available.
The task is to determine whether it belongs to the red class or the cyan class

Suppose now that a new observation, as shown in Figure 20(b) is obtained and needs to be
classified. Since the data set is linearly separable, a number of models (see Figure 21), each with
their corresponding decision boundaries, can be obtained to classify the new observation. However,
the models provide conflicting classifications. Two models predict the new observation as being
red, while the other predicts the observation to be cyan. Each model shows how the choice of the
decision boundary is critical to classification. For example, in model 1 of Figure 21, the decision
boundary is closer to class 2, thus classifying new observations as being red more often. On the
other hand, Model 2 does the exact opposite, classifying new observations as being cyan more often
than not.

Figure 21: Each model has a different decision boundary for classification. From left to right, the
new gray observation was classified as red, cyan, and red for models 1, 2, and 3, respectively.

Finally, the last model will have many misclassifications because part of the decision boundary
is so close to one class: the new observation will be classified as red even when this new observation
is much more similar (“close”) to the cyan class. Figure 21 suggests that it is not clear which
decision boundary is best, but this is where SVM comes in. The main idea of SVM, which stands
for “Support Vector Machines” is to construct a decision boundary that maximizes the separation
between both classes–that way, each class would have a “fair” chance of claiming the new observa-
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tion as part of its class. This classification method was introduced by Vapnik et al. [25, 4]. The
details follows next.

Let {xi, yi} for i = 1, . . . , n, and xi ∈ Rd be the data set, and without loss of generality, suppose
the labels are given by yi ∈ {−1, 1}. Suppose further that the data set is linearly separable so that
the linear boundary is given by the hyperplane

wTx+ b = 0 (19)

where w is normal to the hyperplane, as in Figure 22. Let x+ and x− denote points belonging
to the class with labels +1 and −1, respectively. Then for each data point, and with out loss of
generality, we impose the decision rules1 wTx+ + b ≥ +1 and wTx−+ b ≤ −1, which can be written
compactly as

yi(w
Txi + b) ≥ 1 (20)

For sample points xi that fall on the margin boundaries, we can define

yi(w
Txi + b) = 1 (21)

Note that wTx + b = +1 and wTx + b = −1 are hyperplanes parallel to wTx + b = 0 (see
Figure 22). Moreover, since we want to maximize the separation of both classes, wTx + b = +1
will contain the closest x+ to wTx+ b = 0 so that wTx+ + b = +1. Similarly for the closest x− we
have wTx− + b = −1.

Figure 22: Formulation of the margin in SVM

Let m be the width between the hyperplanes wTx− + b = −1 and wTx− + b = +1, often

referred to as the margin. Then m = (x+ − x−) · w

||w||
, where

w

||w||
is a unit vector perpendicular

to wTx−+ b = 0. Then using the fact that wTx+ + b = +1 and wTx−+ b = −1, the m simplifies to

m =
2

||w||
(22)

Our goal here is to maximize separation between both classes by solving the problem: max
2

||w||
.

However for mathematical convenience this last maximization problem may be written as a mini-
mization problem as follows

min
w∈Rd

1

2
||w||2

subject to: yi(w
Txi + b) ≥ 1 for i = 1, 2, . . . , n

(23)

1Had we chosen wTx+ + b ≥ +δ and wTx− + b ≤ −δ, for δ > 0 we can rescale by dividing through by δ to get
w̃Tx+ + b ≥ +1 and w̃Tx− + b ≤ −1. It can be shown that the end result is the same.
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Here J(w) :=
1

2
||w||2 is a quadratic function with linear constraints and so has a global minimum.

This last minimization problem is equivalent to

max
α

n∑
i=1

αi −
1

2

n∑
i=1

n∑
i=1

αiαjyiyjx
T
i xj

subject to:
n∑
i=1

αiyi = 0 for i = 1, 2, . . . , n

(24)

Suppose α = (α1, . . . , αn) is the optimal parameter values, then it can be shown [ciiite] that this
optimization problem can be solved using Lagrange multipliers and that the solution is given by

w =
n∑
i=1

(αiyi)xi, and w0 =
1

zi
− wTxi

Moreover, for every sample xi, one of the following must hold: Either (a) αi = 0 corresponds to a
sample that is not a support vector2, or αi 6= 0 and yi

(
wTxi + w0 − 1

)
= 0 in which case this is a

support vector.

6.2 Soft-margin extension

If the data is not perfectly linearly separable or “almost” linearly separable we may allow some
data points in one class to appear on the other side of the boundary. This situation can also arise
in the presence of outliers, in which case some data points will not lie close to the bulk of the data
(see Figure 23 (a)).

Figure 23: An example of a data set that is “almost” linearly separable. (a) In the left graph,
the hyperplane is influenced by an outlier. Notice that in this case the margin would have to be
thin. (b) In the right graph, allowing a mistake (misclassification) in the training set allows the
construction of a line that separates both sets.

To handle this scenario, we can introduce slack variable ξi ≥ 0 for each xi so that the minimization
problem, with cost function J = J(w, ξi, . . . , ξn) and new constraints, can be written as [SVM
tutorial]

min
w∈Rd,ξi∈R+

1

2
||w||2 + C

n∑
i=1

I(ξi > 0)

subject to: yi(w
Txi + b) ≥ 1− ξi for i = 1, 2, . . . , n

(25)

Here ξi is a measure of deviation from the ideal sample xi: (i) if xi is on the wrong side of the
separating hyperplane, then ξi > 1. This is a misclassification. (ii) if a sample xi is on the right
side of separating hyperplane but within the region of maximum margin, then 0 < ξi ≤ 1. This
is a margin violation. (iii) if ξi < 0, the ideal case, then xi is on the correct side of the of the
hyperplane, outside the margin. The three scenarios are depicted in Figure 24.

2DEFINE SUPPORT VECTOR
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Figure 24: Data points xi corresponding to different values of ξi.

The term I(ξi > 0) is 1 for ξi > 0 and 0 if ξi ≤ 0. The constant C is a regularization parameter.
If C is small, we allow a lot of samples not in ideal position giving a large margin. If C is large, we
want to have very few samples not in the ideal position thus giving a narrow margin. If C → ∞,
then all constraints are enforced giving the hard margin as in section 6.1. However, it is hard to
solve this minimization problem because of the discontinuity of the indicator function, so instead
we consider

min
w∈Rd,ξi∈R+

1

2
||w||2 + C

n∑
i=1

ξi

subject to: yi(w
Txi + b) ≥ 1− ξi for i = 1, 2, . . . , n

(26)

where

n∑
i=1

ξi is a measure of the number of misclassified examples (see the last paragraph of Section

6.1).

6.3 SVM with multiple classes

SVM is a binary classifier that can easily be extended to more than two classes. Two of the most
common methods are (1) One vs. Rest, and (2) Pairs (also known as One vs. One). The concept
of each method is straightforward. For example, for the one vs rest case, suppose we have three
classes, red, green, and yellow (see Figure 25). Then for each class, a SVM model is constructed,
where each model will classify between being red or not red, green or not green, and yellow or not
yellow, respectively. Thus if there are c classes, then c binary SVM models must be constructed.
Then for each new observation, each of the c models makes its corresponding prediction.

Figure 25: Application of the One vs. Rest method to SVM.

Note that for any given observation it is possible to have conflicting predictions (see Figure
26). A common method consists of taking a majority vote between all models, but a safer approach
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consists of taking the observation that is farthest from the decision boundary for each of the SVM
models (see Figure 27)

Figure 26: An example of when the one vs. rest method gives conflicting predictions. Here the
first and third models disagree with the second model.

Figure 27: Using the farthest distance to the decision boundary to handle conflicting predictions.

6.3.1 MNIST Results

Our first attempt at the MNIST data using SVM consisted of using the multiclass version. Using
the linear classifier provided errors greater than 1.60%. A small sample of results is provided in
Table 7.

Method Parameters Error

tsne + linear SVM d = 3, pcad = 30, perpl = 30, θ = 0.5 3.00%

global PCA + linear SVM (pairs) PCA = 41 1.63%

Table 7: Summary of Instance based methods on the MNIST data set.

The results are poor as expected, because most data sets fail to be linearly separable. Figure
28 shows a visualization of SVM in two dimensions applied to digits 0 and 1.

6.4 Kernel SVM

In the previous section, we discuss the formulation of linear SVM. However, real world datasets are
usually not linearly separable [1], where linear SVM will fail to converge or yield ill results. Can we
generalize the linear SVM method so that it can be applied to datasets which does not have linear
boundaries? Notice that the solution for linear SVM [23] lies in maximize the following optimal
function (24).
The above optimization only depends on the training data through the dot product xTi xj . One
simple remedy is using the ”Kernel Trick”. The idea is to map the data into a higher dimensional
feature space Q, where the data is linear separable and the linear SVM is applicable. Following the
derivation of [3], we write the transformation function Φ as

Φ : Rm → Q
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Figure 28: Visualization of a linear decision boundary for digits 0 and 1.

Next, we need to find the dot products of each paired data in the space Q. The form of the dot
products between xi and xj in Q can be written as

K(xi, xj) = Φ(xi)·Φ(xj),

which is the so-called kernel function, which avoids the complexity of dealing with data in the
mapped high dimensional feature space. The Lagrangian in terms of the kernel function becomes

LD(α) =

n∑
i=1

αi −
1

2

n∑
i=1

n∑
j=1

αiαjzizj K(xi, xj).

Since the kernel function only depends explicitly on the original data , we can apply the usual
linear SVM in the original data space instead of the high dimensional feature space which may
have infinite dimensions. We do not need to calculate the actual transformation Φ, everything is
embedded in the kernel function. In practice, there are three common used kernel functions. The
Polynomial Kernel

K(xi, xj) = (xTi xj + θ)p,

where p and theta are user defined parameters. The Gaussian Kernel

K(xi, xj) = exp

(
−||xi − xj ||

2

2σ2

)
,

where σ is defined by the user. The Sigmoid Kernel

K(xi, xj) = tanh(ηxTi xj + θ),

with user defined parameters η and θ.

Figure 29: The mapping of kernel SVM
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Figure 30: The decision boundary using kernel SVM based on digit 0 and digit 1 after applying
NDA to the pair.

6.4.1 SVM Kernel Selection

Our study show that the Gaussian kernel has the best performance

K(xi, xj) = e−
||xi−xi||

2
2

2σ2

The challenge with our approach is the parameter selection. For each SVM model, we need to tune
the kernel parameter σ and the outlier tolerance C. In practice, C is relatively easier to choose.
For σ, it is difficult to tune. In order to solve this problem, we employ the KNN search to find the
best starting point for σ search. This method has been widely used in other algorithms such as the
spectral clustering. For each group, we find the k-th nearest neighbor of each observation and use
the average of these distances as the starting point of parameter σ. This method works very well
in our study.

For the classification accuracy, the combined global and local PCA with kernel SVM generate
better results than kernel SVM alone. And the local PCA outperforms the global PCA by a small
margin. The detailed results are presented in the next section.

In this study, we have applied both Polynomial Kernel and the Gaussian Kernel to the MIN-
IST data. The results show that Gaussian Kernel outperforms Polynomial Kernel or linear SVM
by a large margin in terms of accuracy. On the original data set, the smallest misclassification
error we have achieved is 1.4% using Gaussian kernel. If we use the deskewed data, the smallest
misclassification error is further reduced to 1.03%.

6.4.2 MNIST Results

This section lists the best accuracy we achieved for three methods on both the original data and
deskewed data, local PCA combined with Gaussian SVM, the global PCA combined with Gaussian
SVM, and the global PCA combined with linear SVM. From the following table, we can see that
the Gaussian kernel SVM outperforms the linear SVM significantly. And the local PCA combined
with SVM (”one-vs-rest”) produces slightly better result than the global PCA combined with SVM
(”one-vs-one”). Note that in the local PCA method, we achieve this accuracy with only 10 SVM
models. As for the global PCA method, one has to train 10× (10− 1)/2 = 45 SVM models.

6.4.3 Springleaf Results

Since SVM is a powerful tool and can be used for analyzing classification problem, we decide to
apply it on Springleaf dataset with kernel trick. One weakness is that SVM can only be used on
numerical data, but in Springleaf dataset, we have a large proportion of categorical variables. This
may influence the accuracy of our prediction.

First, we apply SVM based on the original data. We use 2/3 of the data for building the model,
and 1/3 for testing. Figure 31 shows results when Kernel = Linear, Figure 32 shows results when
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Kernel = Gaussian. Based on the results, the best accuracy we obtain is 78.10%. In Figure 31 to
Figure 34, the x-axis ”index” indicates how many times we did the experiments, and each time we
use different values for the parameters.

Figure 31: Accuracy when Kernel = Linear Figure 32: Accuracy when Kernel = Gaussion

As we know, the distribution of Springleaf data is not balanced: the ratio of target = 0 and
target = 1 is about 4:1. We guess this unbalanced data structure may have some influence on the
model we try to build. So we decide to pick equal observations for target = 0 and target = 1, and
build a new model based on these data. Figure 33 shows results when Kernel = Linear, Figure 34
shows results when Kernel = Gaussian. The best accuracy is 78.00%. There is no big improvement
when we use balanced data.

SVM is not an ideal method for Springleaf dataset. One reason is it can handle numerical data
only, and another reason is SVM is computational expensive. The structure of Springleaf dataset
is complex, and it takes many hours for each run when we use this method, which is very inefficient
for tuning parameter. From the results of SVM, we can also see this method did not give us very
good results. So we consider to use more efficient method.

Figure 33: Accuracy based on balanced data
(Kernel = Linear)

Figure 34: Accuracy based on balanced data
(Kernel = Gaussion)
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7 Ensemble Methods

The idea behind ensemble methodology is to combine a set of models, each of which solves the
same original task, in order to obtain a better composite global model with more accurate and
reliable estimates or decisions than can be obtained from using a single model. The pairwise and
one-vs-rest multiclassifiers are examples of ensembles created from binary classifiers. The idea of
building a predictive model by integrating multiple models has been under investigation for a long
time. Ensemble methods can be also used for improving the quality and robustness of clustering
algorithms.

In the past few years experimental studies conducted by the machine learning community show
that combining the outputs of multiple classifiers reduce the generalization error. Ensemble meth-
ods are very effective, mainly due to the phenomenon that various types of classifiers have different
“inductive biases”. The individual estimators provide different patterns of generalization so diver-
sity plays a crucial role in the training process. Ensemble methods can effectively make use of such
diversity to reduce the variance-error without increasing the bias-error. The ensemble performs
better when each individual machine learning system is accurate and errors are independent.

Given the potential usefulness of ensemble methods it is not surprising many methods are now
available to researchers and practitioners. There are many ways to categorize ensemble techniques
and there is a recognized group of techniques called data resampling which generates different
training sets to obtain unique learner. In this group of methods are bagging, boosting and stacking.

Bagging is short for bootstrap aggregating and is one of the earliest and most intuitive ensemble-
based algorithms. Diversity of classifiers in bagging is obtained by using bootstrapped replicas of
the training data. That is, different training data subsets are randomly drawn with replacement
from the training set. Each training subset is used to train a different classifier of the same type.
Individual classifiers are then combined by taking a simple majority vote of their decisions. For
any given instance, the class chosen by most number of classifiers is the ensemble decision. Since
the training data may overlap substantially, additional measures can be used to increase diversity
such as using a subset of the training data for training each classifier.

Boosting provides sequential learning of the predictors. The first one is learned on the whole
data set, while the following are learned on the training set based on the performance of the previous
one. In other words the instances which were predicted improperly are noted. Then these instances
are more probable to appear in the training set of the next predictor. It results in different machines
being specialized in predicting different parts of the data.

Stacking is a way of combining multiple models that introduces the concept of a meta-learner.
Unlike bagging and boosting, stacking normally is used to combine models of different types instead
of using a winner-takes-all approach. We combine the base classifiers, possible nonlinearly, to
achieve the highest generalization accuracy.

Next, we will introduce three specific models that apply the above ensemble methods. Firstly,
random forest applies the general technique of bootstrap aggregating, or bagging, to tree learners.
Secondly, XGBoost is an implementation of the gradient boosting algorithm. Lastly, a specific
stacking model will be introduced based on the results of previous methods.

7.1 Random Forest

Bagging or bootstrap aggregation is a technique for reducing the variance of an estimated prediction
function. Bagging seems to work especially well for high-variance, low-bias procedures, such as trees.
For regression, we simply fit the same regression tree many times to bootstrap-sampled versions of
the training data and take the average result. For classification, a committee of trees each cast a
vote for the predicted class. The random forests algorithm is very much like the bagging algorithm.
It is developed based on bagging.

Random forest is an ensemble learning method for classification and regression and is based
on a set of decision trees that grow in randomly selected subspaces of data, where each tree in
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the ensemble is grown in accordance with a random parameter. Final predictions are obtained
by aggregating over the ensemble. On many problems the performance of random forests is very
similar to boosting, and they are simpler to train and tune. As a consequence, random forests are
popular and are implemented in a variety of packages.

Since random forest is convenient and very useful, we decide to use this method on both of
our topics. As we know that random forest can handle both categorical variables and numerical
variables, it seems perfect for Springleaf project which includes both types of variables.

7.1.1 Algorithm

The essential idea is to average many noisy but approximately unbiased models, and hence reduce
the variance. Trees are ideal candidates, since they can capture complex interaction. The training
algorithm for random forests applies the general technique of bootstrap aggregating, or bagging, to
tree learners. Given a training set X = x1, ..., xn with responses Y = y1, ..., yn, bagging repeatedly
(B times) selects a random sample with replacement of the training set and fits trees to these
samples:

1. For b = 1 to B:

(a) Draw a bootstrap sample Z∗ of size N from the training data.

(b) Grow a random-forest tree Tb to the bootstrapped data, by recursively repeating the
following steps for each terminal node of the tree, until the minimum node size nmin is
reached.

i. Select m variables at random from the p variables.

ii. Pick the best variable/split-point among the m.

iii. Split the node into two daughter nodes.

2. Output the ensemble of trees {Tb}B1 .

To make a prediction at a new point x:
Regression : f̂rf

B(x) = 1
B

∑B
b=1 Tb(x).

Classification: Let Ĉb(x) be the class prediction of the bth random-forest tree. Then ĈBrf (x)

= majority vote Ĉb(x)
B

1 .
When used for classification, a random forest obtains a class vote from each tree, and then

classifies using majority vote. When used for regression, the predictions from each tree at a target
point x are simply averaged. In addition, the inventors make the following recommendations:

� For classification, the default value for m is
√
p and the minimum node size is one.

� For regression, the default value for m is p/3 and the minimum node size is five.

In practice the best values for these parameters will depend on the problem, and they should be
treated as tuning parameters. Figure 35 shows how we get the final results based on random forest
algorithm.
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Figure 35: Process of Random Forest

7.1.2 Result based on Springleaf Dataset

In this part, we will show the results of random forest based on both original dataset and dataset
obtained by principal components analysis. In the analysis, we divided our data into two parts:
2/3 are treated as train data, and 1/3 are treated as test data.

The following results are based on the dataset which removes columns which have more than
50% NA in each column.

Figure 36 shows the results when the number of maximum tree is 100. Figure 37 shows the
results when the number of maximum tree is 300. If we focus on Figure 36 (A), the upper line
represents error rate for target = 0, the lower line represents error rate for target = 1, and the
middle line represents the overall error rate. We can see from tree = 0 to tree = 100, the error line
has a decreasing trend. According to Figure 37 (A), when maximum tree is 300, we can see the
overall error rate tends to be a constant. In practice, the more trees we generate, the smaller our
error rate will be.

Table 10 and Table 9 are the corresponding confusion matrix. The accuracy when tree = 100
is 78.77%, and accuracy when tree = 300 is 78.98%. This verifies that the more trees we use, the
better result we will get. Comparing to results we get from other algorithm, we conclude 78.98%
is very good in Springleaf case.

In addition, Figure 36 (B) and Figure 37 (B) give ROC results. The area under the curve when
tree = 100 is 0.7734, and area under the curve when tree = 300 is 0.7742, which are very close to
each other.
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Table 8: Tree = 100

Predicted
0 1

True
0 35936 1241
1 9038 2196

Table 9: Tree = 300

Predicted
0 1

True
0 36018 1173
1 9005 2215

Figure 36: Tree = 100
(TP: True Positive Rate; FP: False Positive Rate)

Figure 37: Tree = 300
(TP: True Positive Rate; FP: False Positive Rate)

In sum, random forest has many advantages when deal with Springleaf dataset. It can do
automatic variable selection, handle missing values, and be robust to noise. The results based on
random forest are very stable in general. It performs very well in Springleaf case. The major
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weakness is that it takes long time when tune parameter. So we consider to use a fast-speed
ensemble learning method XGBoost, which will be introduced in next section.

7.1.3 Result based on MNIST Dataset

Ensemble methods like random forest has been used on MNIST data set. We have used this method
with a variant number of trees and on deskewed data. The best results were obtained with 500
trees. The following table gives the results.

Table 10: Tree = 500

Preprocessing # of Candidate Variables per Split Error Rate

Deskewing 60 2.18%

None 50 2.61%

None 60 2.66%

None default 2.73%

Random forest method did not give MNIST data as much success as SVM or k-means method.

7.2 XGBoost

XGBoost is short for “Extreme Gradient Boosting” and is an implementation of the gradient
boosting algorithm. Due to its extremely fast speed and scalability, XGBoost is a very popular
tool in Kaggle competitions. It is used for supervised learning problems, where the training data
xi is used to predict the label of new data yi.

7.2.1 Algorithm

Objective Function
The objective function of XGBoost contains two parts: training loss and regularization:

Obj(Θ) = L+ Ω

where L is the training loss function and Ω is the regularization term. The training loss measures
how predictive our model is on training data. A commonly used training loss is mean squared error.
The regularization term controls the complexity of the model to avoid overfitting.

Tree Ensemble Model The model of XGBoost is a tree ensemble. The tree ensemble model
is a set of classification and regression trees (CART). We classify each point into different leaves,
and assign them the score on corresponding leaf. A CART is a bit different from decision trees,
where the leaf only contains decision values. In CART, a real score is associated with each of the
leaves, which gives richer interpretations that go beyond classification. This also makes the unified
optimization step easier.

Usually, a single tree is not strong enough to be used in practice. What is actually used is the
so-called tree ensemble model that sums the prediction of multiple trees together. The new trees
try to complement the old trees. Mathematically, the model is write as:

ŷi =

K∑
k=1

fk(xi), fk ∈ F (27)

where K is the number of trees, fk is a function in the functional space F , and F is the set of all
possible CARTs. Therefore the objective functions to optimize can be written as:
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Obj(Θ) =

n∑
i=1

l(yi, ŷi) +

K∑
k=1

Ω(fk) (28)

Additive Training
XGBoost uses an additive strategy to train each tree instead of training all the trees at once.

It adds one new tree at a time to fix the already learned ones. The prediction value at step t is

ŷ
(t)
i , we have:

ŷ
(0)
i = 0

ŷ
(1)
i = f1(xi) = ŷ

(0)
i + f1(xi)

ŷ
(2)
i = f1(xi) + f2(xi) = ŷ

(1)
i + f2(xi)

...
ŷ

(t)
i = fk(xi) = ŷ

(t−1)
i + ft(xi)

A new tree is added at each step to optimize the objective:

Obj(t) =
n∑
i=1

l(yi, ŷ
(t)
i ) +

t∑
i=1

Ω(fi)

=
n∑
i=1

l(yi, ŷ
(t−1)
i + ft(xi)) + Ω(ft) + constant

If considering MSE as loss function, it becomes the following form.

Obj(t) =
n∑
i=1

(yi − (ŷ
(t−1)
i + ft(xi)))

2 +
t∑
i=1

Ω(fi)

=
n∑
i=1

[2(ŷ
(t−1)
i − yi)ft(xi) + ft(xi)

2] + Ω(ft) + constant

The form of MSE is friendly, with a first order term (usually called residual) and a quadratic
term. For other losses of interest (for example, logistic loss), it is not so easy to get such a nice
form. So in the general case, we take the Taylor expansion of the loss function up to the second
order:

Obj(t) =
n∑
i=1

[l(yi, ŷ
(t−1)
i ) + gift(xi) +

1

2
hif

2
t (xi)] + Ω(ft) + constant (29)

where the gi and hi are defined as:

gi = ∂
ŷ
(t)
i

l(yi, ŷ
(t−1)
i )

hi = ∂2

ŷ
(t)
i

l(yi, ŷ
(t−1)
i )

After we remove all the constants, the specific objective at step t becomes the following equations
(30). This becomes our optimization goal for the new tree. One important advantage of this
definition is that it only depends on gi and hi. This is how xgboost can support custom loss
functions. We can optimize every loss function, including logistic regression and weighted logistic
regression, using the exactly the same solver that takes gi and hi as input:

n∑
i=1

[gift(xi) +
1

2
hif

2
t (xi)] + Ω(ft) (30)
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Model Complexity
Another important thing about the above objective function is the regularizationthe complexity

of the tree Ω(f). First, refine the definition of a tree f(x) as:

ft(x) = wq(x), w ∈ RT , q : Rd → {1, 2...T}

where w is the vector of scores on leaves, q is a function assigning each data point to the corre-
sponding leaf and T is the number of leaves. In XGBoost, the complexity is defined as:

Ω(f) = γT +
1

2
λ

T∑
j=1

w2
j

Structure Score
After reformalizing the tree model, we can write the objective value with the t-th tree as:

Obj(t) ≈
n∑
i=1

[giwq(xi) +
1

2
hiw

2
q(xi)

] + γT +
1

2
λ

T∑
j=1

w2
j =

T∑
j=1

(
∑
i∈Ij

gi)wj +
1

2

∑
i∈Ij

hi + λ)w2
j ] + γT

where Ij = {i|q(xi) = j} is the set of indices of data points assigned to the jth leaf. Notice that
in the second line we have changed the index of the summation because all the data points on the
same leaf get the same score. We could further compress the expression by defining Gj =

∑
i∈Ij gi

and Hj =
∑

i∈Ij hi:

Obj(t) =
T∑
j=1

[Gjwj +
1

2
(Hj + λ)w2

j ] + γT (31)

In this equation wj are independent of each other, the form Gjwj + 1
2(Hj +λ)w2

j is quadratic. The
best wj for a given structure q(x) and the best objective reduction we can get is as equation (32)
and (33). The last equation measures how good a tree structure q(x) is.

w∗j = − Gj
Hj + λ

(32)

Obj∗ = −1

2

T∑
i=1

G2
j

Hj + λ
+ γT (33)

Learn the tree structure
Now that we have a way to measure how good a tree is, ideally we would enumerate all possible

trees and pick the best one. In practice it is intractable, so we will try to optimize one level of the
tree at a time. Specifically we try to split a leaf into two leaves, and the score it gains is:

Gain =
1

2
[

G2
L

HL + λ
+

G2
R

HR + λ
− (Gl +GR)2

HL +HR + λ
]− γ (34)

This formula can be decomposed as 1) the score on the new left leaf 2) the score on the new
right leaf 3) The score on the original leaf 4) regularization on the additional leaf. We can see an
important fact here: if the gain is smaller than γ, we would do better not to add that branch. This
is exactly the pruning techniques in tree based models.
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7.2.2 MNIST Results

Xgboost was applied to the MNIST data set giving the smallest result of 1.77% error, without using
PCA and using the corresponding R packages. Parameter settings were, for example,

"objective" = "multi:softmax","eval_metric" = "mlogloss", "num_class" = 10, "eta" = 0.2, "colsample_bytree"=0.5,"subsample" = 1)

where the last parameters mostly influenced the error. We also noticed that using PCA increased
error rather than decreased it and was no longer pursued. After deskewing the data, our error was
reduced to 1.41% by using the parameters.

param = list("objective" = "multi:softmax","eval_metric" = "merror", "num_class" = 10,

"eta" = 0.18, "colsample_bytree"= 0.45,"subsample" = 3, "verbose"= 0, "seed" = 10)

After comparison with other machine learning methods we decided to focus on other algorithms
that had more promising results for the MNIST dataset and further analysis was discontinued.
Sample code and more results with a few variations in the parameters are found in the code section
of this paper.

7.2.3 Result on Springleaf Dataset

Figure 38 show the error rate tendency of XGBoost. The horizontal axis is the number of trees and
the vertical axis is the error rate of prediction. The points in the lower curve and upper curve are
the error rates for predicting training data and test data separately. As the new trees in XGBoost
is to complement the old trees, we can see that the error rates of prediction decreased with the
number of trees increasing.

In the parameter tuning in XGBoost, we are very careful about the over fitting problem. The
error rate of prediction for test data and training data decreased with the number of trees. As we
increase the number of trees, the error rate of training data would keep decreasing while error rate
of test data would be flat as shown in Figure 38. This would imply that more than 1000 trees will
make the model over fitted.

Train data

Test data

Figure 38: Error rate of prediction for test and training data

After tuning the parameters in XGBoost, the best accuracy we got is 80.0%. The accuracy for
target=0 is 96.06% and the accuracy for target=1 is 26.78%. The confusion matrix is shown in
table 11.
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Table 11: Confusion Matrix

True Accuracy
0 1

Predicted
0 35744 8201 96.06%
1 1467 2999 26.78%

We also get the AUC(the area under ROC curve) plot shown in Figure 39. As we mentioned
before, the larger the area under ROC curve is, the more accurate it would be. The points in the
upper curve and lower curve are the AUC for predicting the training data and test data separately.
As we can see, the AUC of both test data and training data increased with the number of trees.
The largest area under the curve based on XGBoost is 0.7901 which is the best result among all
the classifiers we tried before. It implies that XGBoost which can naturally handle both categorical
and numerical variables are very suitable in our case.

AUC VS. Number of trees

dNumber of trees
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Test data 

Train data 

Figure 39: AUC for predicting test and training data

7.3 Stacking

Stacking normally is used to combine models of different types. The procedure is as follows:
split the training set into two disjoint sets. Train several base classifiers on the first set. Test
the base learners on the second set. In the third set, using the predictions from base classifiers as
the inputs, and the correct responses as the outputs, train a higher level classifier which is also
called Meta-classifier. Note that steps 1 to 3 are the same as cross-validation, but instead of using
a winner-takes-all approach, we combine the base classifiers, possible nonlinearly, to achieve the
highest generalization accuracy.
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Figure 40: stacking generation

In the Springleaf case, the total stacking model is shown in Figure 40. The entire training data
set is divided into several different blocks to match different classifiers and introduce more diversity
into stacking model. For example, the low level features are more likely to be categorical features,
so we train them with XGBoost or logistic regression which can handle categorical variables. As
for the high level features, we suppose they are continuous variables, SVM or KNN seem to be
more suitable for them. We also have other blocking methods to construct the subsets of training
data, like sparse and condense data which are distinguished by how many zeros are in the features.
Sparse data is the subset of training data with all the features whose most frequent elements are
the default value 0 and null. On the contrary, features whose elements are meaningful values are
condensed data. The underlying idea of the separation of sparse data and condense data is to avoid
the former ones being overwhelmed by latter ones.

We use the total data set and the above subsets as the input to train multiple classifiers we
introduced before. The classifiers with the most accurate predictions are chosen as the base classi-
fiers. As shown before, XGBoost, Logistic regression and random forest have better performance
than other models. They are the base classifiers in our stacking model. The results from the base
model is shown in table12.

Table 12: Results of base models

Base model generation Accuracy Accuracy
(target=1)

AUC

XGB + total data 80.0% 28.5% 79.1%
XGB + condense data 79.5% 27.9% 78.9%
XGB + Low level data 79.5% 27.7% 78.4%
Logistic regression+ sparse data 78.2% 26.8% 77.6 %
Logistic regression+ condense data 79.1% 28.1% 77.9%
Random forest + PCA 77.6% 20.9% 76.4%

The outputs of these base classifiers, along with the actual correct labels constitute the training
dataset for the meta-classifier which is XGBoost classifier. We also tried some unsupervised ap-
proaches like applying kmeans or average on the outputs of base classifiers to cluster the dataset into
two groups. However, they did not give us better result than using XGBoost as a meta-classifier.
The final results of the meta classifier are shown in Table 13. After stacking, the accuracy increased
by 1% comparing to the best result of base classifiers. It is a significant improvement for the Kaggle
competition.
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Table 13: Results of meta models

Base model generation Accuracy Accuracy
(target=1)

AUC

XGB 81.11 % 29.21% 79.6%
Averaging 79.44% 27.31% 77.2%
Kmeans 77.45% 23.91% -

7.4 Neural networks

7.4.1 Introduction of Artificial Neural Network

Neural networks, also known as Artificial Neural Network (ANN), is a popular information process-
ing method in data mining and machine learning areas. It is inspired by biological nervous systems
and is able to learn by example, like humans. ANN provides the best solutions to many problems,
such as pattern recognition, data classification and language processing.
The following figure shows a the structure of ANN

1. The leftmost layer(xn) inputs features, and the rightmost layer(yn) outputs results for the
user. The layer(s) between them are named hidden layer(s).

2. The solid circles represent neurons, which process inputs from previous layer and output
results for next layer (or the user).

3. The lines connect neurons and usually are assigned weight.

The network may have more than 1 hidden layer (called a deep network). Deep network is currently
a very hot research field in the deep learning area.

Figure 41: A mathematical model of Artificial Neural Network

7.4.2 What is a biological neuron?

Neurons, also known as nerve cells, are special cells that process and transmit information by elec-
trical signaling. The picture below shows human brain nerve cells. A neuron connects to other
neurons to form a network. In fact, human brain has around 1011 neurons, and each of them may
be connected up to 10,000 others.

A single nerve cell is made up of four parts, which are soma (body of the neuron), dendrites,
axon and axon terminal. The dendrites of a neuron are cellular extensions with many branches;
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Figure 42: Biological neurons from the human brain)

these are the majority of input to the neuron. The axon’s main function is to carry signals away
from the soma.

7.4.3 Artificial Neurons and Activation Functions

When the human brain is simulated, each of the human brain neural cell connects with many each
other cells and works independently like a small project itself. At the same time, they exchange
information one by one and sum up their analysis results to make decisions. ANN algorithm works
in a similar way by running a simulation of a bunch of heavily interconnected little mini-programs,
called neurons.

Figure 43: Artificial Neuron

Artificial neurons are mathematical functions from Rd → R defined by wights (wi), bias (b)
and f (rule). These rules are called activation functions. Actually, ANN is a composition of
many functions. It has been proved that every continuous function from input to output can be
implemented with 1 hidden layer (containing enough hidden units) and proper nonlinear activation
functions.
There are several popular activation functions:

Figure 44: Activation Functions
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As the picture shows, input data enter from left side and has some operations performed on first
layer of neurons. The simplest ANN model just include input layer, one hidden layer and output
layer, but most deep learning models has more hidden layers. The number of layers depends on
your data set and your specific application.

7.4.4 How to train ANNs

In a real world application, if we want to solve more complex problem, one layer model is not
enough. Multilayer Neural Network models are introduced. Multilayer perceptrons (MLP) is one
of them.
First, we select an activation function for all neurons. Second, we initialize weights w and bias b.
Then, in order to get a good prediction, we need to tune the weights and bias. However, since
each perceptron has discrete behavior, making it an effect latter layers hard to predict. As we
mentioned before, there are several different activation functions. One of them is Sigmoid, which
is the smoothed-out version of the perceptron.

f(w · x+ b) =
1

1 + e−(w·x+b)

This function can reduce the affect of the value of w and b. In other words, when we tune these
parameters, a “small” change can cause a slice difference in the output.

These are notations of sigmoid neuron network:

Matrix of all weights:

Wl = (wljk)j,k; (wljk is layer l, j back to k weight.)

Vector of biases in layer l:

bl = b(blj)j ; (blj is layer l, neuron j bias.)

Vector of outputs from neurons in layer l

al = (alj)j ; (alj is layer l, neuron j output)

Vector of weighted inputs to neuron in layer l:

zl = (zlj)j ; (zlj =
∑
k

wljka
l−1
k + blj ; weighted input to neuron j in layer l)

From the above, we have

Input layer is a0 = x; and the output is aL

For each 1 ≤ l ≤ L:
al = σ(Wlal−1 + bl) = σzl

The square loss function depends on it weights and biases:

C({Wl,bl}1≤l≤L) =
1

2n

n∑
i=1

||aL(xi)− yi||2

To simplify, we consider n = 1:

C({Wl,bl}1≤l≤L) =
1

2

n∑
i=1

||aL(xi)− yi||2 =
∑
j

(aLj − yi(j))2
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Figure 45: Sigmoid Neuron Network

Similar to the previous method, we still use gradient decent to tune the weight and bias. We
need to compute ∂Ci

∂wLjk
and ∂Ci

∂bLj
first. By the chain rule we have:

∂Ci

∂wLjk
=
∂Ci

∂aLj

∂aLj

∂wLjk
= (aLj − yi(j))

∂aLj

∂aLj

∂zLj

∂wLjk
= (aLj − yi(j))σ′(zLj )aL−1

k

And we have
aLj = σ(

∑
k′

wLjk′a
L−1
k′ + bLj ) = σzLj

Figure 46: Computation for the output layer

Similarly, we obtain that

∂Ci

∂bLj
=
∂Ci

∂aLj

∂aLj

∂bLj
= (aLj − yi(j))σ′(zLj )

The rate of change of Ci with the respect to wLjk depends on the following three factors:

aLj − yi(j), σ′(zLj ), aL−1
k

After computing L layer, we continue with L -1 layer:

∂Ci

∂wL−1
kq

=
∑
j

∂Ci

∂aLj

∂aLj

∂wL−1
kq

=
∑
j

∂Ci

∂aLj

∂aLj

∂aL−1
k

∂aL−1
k

∂wL−1
kq
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Where,

∂Ci

∂aLj
is known;

∂aLj

∂aL−1
k

is link between layers L and L-1;
aL−1
k

∂wL−1
kq

similarly as output layer

The same as L -2 and more further inside links between layers:

∂Ci
∂wlqr

=
∑

p,...,k,j

∂alq
∂wlpq

∂al+1
p

∂alq
· · ·

aLj

∂aL−1
k

∂Ci

∂aLj

Figure 47: Computation of layer L-1

Then, using the backpropagation algorithm, we have:

∂aLj
∂alq

=
∑
p,...,k

∂al+1
p

∂alq
· · ·

∂aLj

∂aL−1
k

for l = L, ..., 1

=>
∂Ci
∂wlqr

=
∑
j

∂alq
∂wlqr

·
∂aLj
∂alq
· ∂Ci
∂aLj

∂Ci
∂wlqr

=
∑
j

∂alq
∂blq
·
∂aLj
∂alq
· ∂Ci
∂aLj

After initializing all the weights wljk and biased blj , we use above formulas to compute ∂Ci
∂wlqr

, ∂Ci
∂wlqr

of every layer and every neuron.
Now, we can update the weights and biases by:

wljk ← wljk − η ·
∂Ci
∂wlqr

, blj ← blj − η ·
∂Ci
∂wlqr

These steps are repeated until convergence.
We can implement these functions in python; for more detail information, please check the reference
link at the end of this report.

7.4.5 Our experiments and result

The MNIST Digits Recognition Problem: The following table shows parameters group 1
used and the error rate.

Cross-Val : Train Rate Error Rate Layers and Best Parameters

Set 1 1:3 1.29% one layer
20x[500,250,100,50]

Set 2 1:4 1.4% two layers
10x [100,50]
10x [300,150,50]
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The Springleaf Marketing Response Problem: We tried three Neural Network R Pack-
ages:

� neuralnet: Training of neural networks using backpropagation, resilient backpropagation
with (Riedmiller, 1994) or without weight backtracking (Riedmiller and Braun, 1993) or the
modified globally convergent version by Anastasiadis et al. (2005). nnet

� nnet: Software for feed-forward neural networks with a single hidden layer, and for multino-
mial log-linear models.

� RSNNS : Neural Networks in R using the Stuttgart Neural Network Simulator (SNNS)

After comparing the three packages, only “neuralnet” worked for our project. We have tried our
whole training data set as input data, but we did not get output after running the data set for 10
days. So we just use 4000 observations to train model and pick several two layers matrix. However,
the result is not as good as we expected. Sometimes, it cannot predict target 1 and assign all the
data as group 0. So we did not use these result.

A large fraction of this section is written based on Dr. Chen’s slides at
http://www.math.sjsu.edu/˜gchen/Math285S16/lec9neuralnets.pdf

The reader is referred to the above url for further details.
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8 MNIST Experiments

During the course of the project we experimented with different ways of combining dimension re-
duction and classification. In particular we explore a technique we call “local dimension reduction”
where instead of a applying dimension reduction technique such as PCA to the entire dataset before
training our classifiers, apply localized versions of PCA to different classes or pairs of classes and
train classifiers in the reduced space.

We also explore ways to extend LDA using features corresponding to zero eigenvectors.

8.1 Local One-vs-Rest PCA

In this section we present a method of combined PCA with kernel SVM. Previous studies apply
PCA on all training data and classify the data in the PCA space with kernel SVM. We will name this
method as “global PCA” the dimension reduction is applied to the entire dataset. The procedure
is straightforward. First apply PCA on the whole training data set and choose a certain number
of principle components. Then we train our classifier in the reduced space. For classification, the
test data needs to be projected into the reduced space and classified there.

We propose applying dimension reduction to each class separately. We first apply PCA to the
points of a single class i. Then the rest of the training set is projected into the reduced space and
a classifier fi,¬i is trained. Classification of a new point x is done by projecting it into each of the
N subspace where its image y = Wi(x) is classified.

We give a pseudo-algorithm for the one-vs-rest dimension reduction procedure for the unsuper-
vised case.

1. center X about the ith mean µi

2. find dimension reduction Wi

3. train fi on the set Yi = Wi(X)

Where fi,¬i binary classifier for class i and not i. To classify a new point x, for each class i

1. xc = x− µi

2. y = Wi(xc)

3. ci(x) = fi,¬i(y)

classification of x is done according to rule (2). For our purposes, the classifier used is a kernel
SVM.

Figure 48: Local PCA with one-vs-rest SVM method

Below is a comparison between the one-vs-rest or “classwise” PCA to the “global” PCA. Overall
the global application of PCA outperforms the classwise application in our preliminary experiments.
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Figure 49: One-vs-rest SVM with Local PCA

8.2 Local Pairwise Dimension Reduction

To construct a pairwise classifier using this method, we first apply a dimension reduction technique
to the subset of data containing only the points of classes i and j. Then a classifier fij is trained
on the reduced subset. This is done for all pairs i,j. A new point is classified by projecting it into
each of the

(
N
2

)
subspaces and its images are classified by rule (2).

Below give a pseudo-algorithm for the pairwise dimension reduction procedure. Let Xij be the
subset of X corresponding to classes i and j and µij its centroid. Then, for each pair ij,

1. center Xij about the mean µij

2. find dimension reduction Wij

3. train fij on the set Yij = Wij(Xij)

Classification of new data is done by the following. Let x be a new point. Then for each pair i and
j,

1. xc = x− µij

2. y = Wij(xc)

3. cij(x) = fij(y)

classification of x is done according to rule (2).
In this experiment we try pairwise SVM using NDA and LDA with a baseline case (i.e. Wij =

I). A kernel SVM was used with parameter γ = 1√
d
, which is the square root of the default

parameter setting in LIBSVM. The data was first reduced to 300 dimensions using PCA. The
pairwise transformations were then applied over a range of dimensions between 2 and 10. Results
converge as d grows larger and approaches m, the number of dimensions of the full dataset.

As can be seen from the plot, the two discriminant transformations worsen classification accu-
racy as compared to no pairwise transformation (i.e. Wij = I in 3.1.1). The baseline error rate
exceeds the error rates of NDA and LDA for d < 10 and d < 7, respectively, where the error rate
increases to over 50%. It is interesting to note that the behavior of the LDA error rate mirrors the
behavior of the simple SVM curve, while the NDA error rate decreases linearly until d < 10. Also
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Figure 50: Pairwise Dimension Reduction

noteworthy is the noticeable increase in the error rate at low dimensions exhibited by LDA and the
base case. NDA appears to preserve classification features at lower dimensions better than LDA.

Figure 51 compares pairwise PCA with global PCA. We can see that we gain a slight improve-
ment in accuracy with the pairwise method using between 30 and 45 principle components.

Figure 51: Pairwise Dimension Reduction

8.3 LDA Extension

As mentioned in Section 1.2, LDA has at most c− 1 nonzero (real part) eigenvalues which can be
used for feature extraction. The obvious question is whether information useful for classification is
contained in the features corresponding to the zero eigenvalues. Another related issue is the possi-
ble existence of complex eigenvalues and how to handle them. In both cases the question of how
to select among the features y = wTX where w is a zero-eigenvector of S−1

w Sb must be answered.
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We experiment sorting these features in order of ascending variance V ar(y).
First, we sort all features corresponding to eigenvalues with zero real parts by increasing vari-

ance. Next, we front-load the eigenvalues with nonzero complex parts followed by variance-sorted
zero-eigenvalues. These are compared to the unsorted features as extracted from the original trans-
formation.

Figure 52: Pairwise SVM + LDA Extension
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9 Summary of Results

9.1 Summary of Results

This section presents the results of all the methods as well as the combination of methods, that
have been tried out in the MNIST digit recognition project. We will start with the instance based
methods, namely, k Nearest Neighbors and k Means. This will be followed by support vector
machine methods, neural networks and finally some ensemble methods.

9.1.1 k-Nearest Neighbors

Method Detail Preprocessing Method Best Parameters Error Rate

Weighted kNearest
Neighbor with weighted

sum rule
None k = 8 2.76%

kNearest Neighbor by
majority Voting

None k = 3 2.95%

Matrix kNearest Neighbor
with 2D LDA

2D LDA k = 5, L2 marix norm 2.96%

9.1.2 Local k Means

Method Detail Preprocessing Method Best Parameters Error Rate

local k Means with
deskewing and oneVsAll

PCA

Deskewing and oneVsAll
PCA,dimension=150

k = 10 1.14%

local k Means on
deskewed data

Deskewing k = 10 1.17%

local k Means after local
PCA

local PCA,
dimension=150

k = 10 1.53%

local k Means None k = 14 1.75%

local k Means after PCA
Global

PCA,dimension=50
k = 2 2.19%
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9.1.3 Support Vector Machine

Method Detail Preprocessing Method Best Parameters Error Rate

Pairwise SVM after PCA
on deskewed data

Deskewing + PCA,
dimension=60

RBFkernel, γ =
0.034, c = 3

0.94%

Pairwise SVM after PCA
on deskewed data

Deskewing + PCA,
dimension=45

RBFkernel, γ =
0.056, c = 2

0.97%

OneVsAll SVM after
OneVsAll PCA on

deskewed data

Deskewing + OneVsAll
PCA, dimension=55

RBFkernel, γ =
0.034, c = 5

1.0%

OneVsAll SVM after
OneVsAll PCA

OneVsAll PCA,
dimension=55

RBFkernel, γ =
0.034, c = 5

1.2%

Pairwise SVM after
Global PCA

Global PCA,
dimension=45

RBFkernel, γ =
0.036, c = 3

1.23%

Pairwise SVM after
Global PCA

Global PCA,
dimension=57/58

RBFkernel, γ = 0.05, c =
2

1.25%

Pairwise SVM after
pairwise PCA

Pairwise PCA,
dimension=50

RBFkernel, γ = 0.02, c =
2

1.31%

SVM after Global PCA
and pairwise NDA

Global PCA + NDA,
d1=300, d2=45

RBFkernel, γ = 0.04, c =
5

1.38%

Pairwise SVM None
RBFkernel, γ =

0.034, c = 5
1.4%

SVM with global tSNE Global tSNE
d = 3, pcad = 30,perp =

30, theta =
0.5,dimension = 300

3.0%

Global linear SVM with
parametric tSNE

Parametric tSNE
layer[600, 600, 1500], perp =

30, dimension = 300
3.4%

9.1.4 Neural Networks

Method Detail Preprocessing Method Best Parameters Error Rate

Neural Network Ensemble
on deskewed data

Deskewing + Neural
Network Ensemble

20x[500,250,100,50],
crossentropy, (cross-val,

train)=(.25,.75)
1.29%

Neural Network Ensemble
on deskewed data

Deskewing + Neural
Network Ensemble

10x [100,50] and 10x
[300,150,50], cross entropy,

(cross-val, train) =
(0.2,0.8)

1.41%

9.1.5 Combined Methods

In this section results of two classification methods have been combined. The data set has been
deskewed and dimension of the data has been reduced to 60 using PCA. The pre-processed data set
then has been used to predict the digits with SVM algorithm as well as local k means algorithm.
Henceforth, using the Bayes Rule we obtain the method that maximizes the conditional probability
of a correct decision. By this we mean, we consider the method with higher P (X = i|X̂ = i), i =
0, 1...9. Having chosen the method that maximizes the probability, the prediction is the digit that
has highest probability of being the prediction by that method.
With this brief description, we tabulate the results of our combination method where we combined
the two methods that have been most successful for our data set, namely, local k-means and SVM.
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Method Detail Preprocessing Method Best Parameters Error Rate

SVM and local k means
deskewed data after PCA

Deskewing + PCA,
dimension=60

k=10, RBF kernel,
γ = 0.034, c=3

0.97%

9.2 Springleaf Marketing Response

Springleaf is a specific data mining project in the real world. What we face is not the well designed
and clean data in the textbook, but huge and noisy data with a lot of missing values and mixed type
of features. We need to determine inaccurate, incomplete data and improve the data quality before
data analysis. In feature engineering process, some feature encoding like adding date difference
gives us an impressive promotion. As for dealing with the missing value, we tried three ways.
It turns out that filling the missing value with median value has better performance than filling
that with mean value or randomly replacing missing value according to the value distribution in
the feature. After data pre-processing, we tried various classification techniques on the cleaned
data. The results show classifiers which based on distance like SVM, KNN are not suitable for our
case, however, tree model or logistic regression which can naturally handle variables of mixed type
are preferred here. This may imply that categorical variables are dominant in our data set. To
further improve the result, we applied stacking method to ensemble six base models with different
classifiers and different subsets of data. The stacking method gives us additional 1% improvement
on accuracy. We believe that a crucial point to the success of stacking is feature diversity. Figure
53 shows the result summary of all the classifiers. Overall, our most significant improvement came
from model selection, parameter tuning and Stacking.

Figure 53: Methods comparison for Springleaf data

10 Future Work

Through the MNIST digit recognizer we have explored different dimension reduction and classifi-
cation techniques and have combined them to produce more accurate results. Our experimentation
lead to some possible avenues for further exploration including using an SVM parameter selection
method based on kNN, incorporating a dimension reduction step into pairwise and one-vs-rest
SVM, and extending discriminant analysis transformations into higher dimensions using features
vectors in the kernel of the transformation, see (insert appropriate sections).

Using a pairwise or one-vs-rest kernel SVM classifier requires the training of multiple constituent
kernel SVMs. Each kernel SVM has its own optimal set of parameters C and σ and different SVMs
may have different optimal sets. Optimizing each constituent SVM separately multiplies the com-
putation time needed to train the whole model. Therefore it is desirable to find a single set of
parameters that optimize accuracy over the whole classifier and a method of finding it. We experi-
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mented with a method of selecting scale parameter σ using kNN using the log(n) nearest neighbors.
Along with finding optimal parameters for kernal SVM, our use of a pairwise transformation

before training each SVM slightly improved accuracy. It is possible the application of these local
dimension reductions into the training of the constituent binary classifiers can improve accuracy
general. Both require further study using the MNIST set and their application to different datasets
to determine if they generalize to other kinds of data.

There are some topics that we covered near the end of the project or in passing that we would
like to learn more about. Neural networks achieved the best results of all the classification methods
tried here. We would like to understand more about neural networks especially convolutional neural
networks and ways to increase training speed. In addition, model validation techniques such as
cross validation are important topics we should continue to explore.
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% CAMCOS Function: LocalKmeansAnalysis
%%% Student: Wilson A. Florero-Salinas date: 9/17/15
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% LocalKmeansAnalysis(k)
% k = number of neighbors in the local search; pred = predictions ;
% Assumes that data sets are in correct format (each observation is a row)
% Uses a local kmeans search for classification. Algorithm: (1) Given a test
% observation, find kNN for each set of digits. (2) Compute average of the kNN.
% (3) Compare observation with each (local) kNN average.
% (4) Assign to class that has closest trained center.

function [pred, Error] = LocalKmeansAnalysis(Xtr,ytr,Xtst,ytst, k)

[Ntst, N_vars] = size(Xtst);
Ntr = length(ytr);
position = 1:Ntr;
LocalCenters = zeros(10,N_vars);
pred = zeros(Ntst,1); %vector that will stores the predictions.

for i = 1:Ntst
for j = 0:9

labels = ytr == j;
[indx,~] = knnsearch(Xtr(labels,:), Xtst(i,:), 'k',k);
x = position(labels); indx = x(indx); % preserve locations from

% original data set.
LocalCenters((j+1),:) = mean(Xtr(indx',:),1);

end
[idx,~] = knnsearch(LocalCenters, Xtst(i,:), 'k',1);
pred(i,1) = idx - 1;

end

%Calculating Classification Error
Error = 1 - sum(pred == ytst)/Ntst;
fprintf('Misclassification Error = %.2f%%, using k = %i \n', Error*100, k)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% k-Nearest Neighbors %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%---input---
%k: neighborhood size
%wmethod: weighting scheme- 'weighted','gaussian','dual','none'
%Xtr: dxn training data
%ytr: nx1 training labels
%---output---
%class: predicted class

function[class]=WkNNclassify(k,newData,wmethod, Xtr,ytr)

%calculates euclidean distance using column vectors as data points
n=size(Xtr);
temp=(Xtr-repmat(newData,1,n(2))).ˆ2; %subtract newData accross columns of ←↩

trainingData
temp=sqrt(sum(temp,1)); %square root of column-sums (euclidean ←↩

distance)
[D,I]=sort(temp);

if strcmp(wmethod, 'gaussian') %gaussian kernel
dmax=D(k+1);
D=D(1:k); I=I(1:k);
dweights=(1./dmax).*D;
weights=(1./sqrt(2*pi))*exp(-0.5*(dweights.ˆ2));
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W=[ytr(I), weights.'];
Candidates=unique(ytr(I));

elseif strcmp(wmethod,'weighed') %weighted
D=D(1:k); I=I(1:k);
weights=(max(D)-D)./(max(D)-min(D));
W=[ytr(I), weights.'];
Candidates=unique(ytr(I));

elseif strcmp(wmethod, 'dual') %dual weighted
D=D(1:k); I=I(1:k);
weights=((max(D)-D)./(max(D)-min(D))).*((max(D)+min(D))./(max(D)-D));
W=[ytr(I), weights.'];
Candidates=unique(ytr(I));

elseif strcmp(wmethod, 'none') %no weighted
D=D(1:k); I=I(1:k);
weights=ones(length(D),1);
W=[ytr(I), weights];
Candidates=unique(ytr(I));

else
disp('Error')

end

m=length(Candidates);
temp_sum=zeros(m);
for i=1:m

temp_sum(i)=sum(W((find(W(:,1) == Candidates(i))),2));
end
[~, I2]=sort(temp_sum, 'descend');
class=Candidates(I2(1));
end
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%%%%%%%%%%%%%%%%%%%%%%
%%%% NDA Code %%%%
%%%%%%%%%%%%%%%%%%%%%%

%%% NDAprojected() %%%
%Xtr: new data, observations in columns
%ytr: class labels for observations in data
%d: number of features to extract
%k: size of neighborhoods for local centers in Sb
%a: weight exponent
%b: scalar in S + bI
%cent: 'center' to center data
function[transf]=NDAproject(Xtr,ytr,k,a,b, cent)

isCent=false;
if strcmp(cent, 'center')

[~,N]=size(Xtr);
Xtr=Xtr-repmat(mean(Xtr,2),1,N); %center data
isCent=true;

end

[SB, SW]=NPscatterMatrix(Xtr, ytr, k,a);
SW=SW+eye(size(SW)).*b;
E=inv(SW)*SB;
[W,D] = eig(E);
[D,I] = sort(diag(D),'descend');
W = W(:,I);

transf=struct('mat',W,'eigs',D,'method','NDA','k',num2str(k),'a',num2str(a),'bump',←↩
num2str(b),'centered',isCent);

end

%%% withinScatter() %%%
%creates Swi matrix
%Sw=sum(Swi)
%---input---
%Xtr=dxn matrix
%index for subsetting data by class
%---output---
%within scatter matrix for ith class

function[SWi]=withinScatter(Xtr, index) %obs is in columns
temp=Xtr(:,index); %subset columns by index
n=size(temp);

SWi=zeros();
mu=mean(temp,2);
for i=1:n(2)

temp2=(temp(:,i)-mu);
SWi=SWi+temp2*(temp2.');

end

end

%%% NPbetweenScatter() %%%
%creates Sb matrix
%---input---
%k: neighborhood size
%a: exponent on distance weights
%---output---
%Sb matrix
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function[Sb]=NPbetweenScatter(Xtr,ytr,k,a)
classes=unique(ytr);
Sb=zeros();

%outer: by class
%inner: by each point
%inter-inter: rest of classes

for j=1:length(classes) %for each class
subSet=Xtr(:,logical(ytr==classes(j))); %subset data by class
Nj=size(subSet,2);
for l=1:Nj %for each point in class

%apply neighborData() to lth point in jth class
[w,Mj]=neighborData(subSet(:,l),classes(j),Xtr,ytr,k,a);
for i=1:size(Mj,2) %for classes in Mj vector

y=subSet(:,l)-Mj(:,i);
Sb=w(i).*(y*y')+Sb; %iterative sum to Sb matrix

end
end

end

end

%%% NDAproject() %%%
%---input---
%newPoint
%c: class of newPoint
%Xtr: dxn data matrix
%ytr: nx1 vector of labels
%k: neighborhood size
%a: exponent on distances used in weights
%---output---
%weights: (c-1)x1 vector of weights
%centers: nx(c-1) matrix of local centroids of newPoint, excluding c

function[weights, centers]=neighborData(newPoint, c, Xtr, ytr, k, a)

classSet=unique(ytr);

m=length(classSet); %num class
n=size(Xtr);

%euclidean distance of newPoint from each training point
dist=sum(Xtr-repmat(newPoint,1,n(2))).ˆ2;
dist=sqrt(sum(dist,1));

centers=zeros(n(1), m); %initialize storage for local centers

parfor j=1:m %iterate over number of classes
index=find(ytr == classSet(j));
tempdat=Xtr(:,index); %subset by class
tempdist=dist(index); %subsets distances
[~,I]=sort(tempdist); %sort distances
nbhd=I(2:(k+1)); %k-nearest points from class, excluding ←↩

newPoint
centers(:,j)=mean(tempdat(:,nbhd), 2); %calculate class center

end

%calculates euclidean distance of newPoint from centers
dist2=(centers-repmat(newPoint,1,m)).ˆ2; %subtract newData accross columns of ←↩

trainingData
dist2=sqrt(sum(dist2,1)); %distances between class centers
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%distance from local center of its own class
dist_i=dist2(logical(classSet==c)==1);
%distances from local centers of other classes
dist_j=dist2(logical(classSet==c)<1);

weights=zeros(length(dist_j),1);

%calculates weights
for j=1:length(dist_j)

if dist_i<=dist_j(j)
weights(j,1)=dist_i.ˆa/(dist_i.ˆa + dist_j(j).ˆa);

else
weights(j,1)=dist_j(j).ˆa/(dist_i.ˆa + dist_j(j).ˆa);

end
end

centers=centers(:,logical(classSet==c)<1); %remove newPoints's class from local ←↩
centers

end

%%% TwoDScatterMatrix() %%%
%create Sw and Sb matrices for use in inv(Sw)*Sb
%---input---
%data: dxdxn data matrix
%labels: nx1 vector of labels
%---output---
%Sw and Sb matrices
function[Sw, Sb]=TwoDscatterMatrix(data, labels)
classes=unique(labels);
L=length(classes);
Sb=TwoDbetweenScatter(data, labels); %apply TwoDbetweenScatter()

Sw=zeros();
%iterate TwoDwithinScatter() over classes to create Sw matrices
parfor k=1:L

tempIndex=find(labels==(k-1));
Sw=Sw+TwoDwithinScatter(data, tempIndex);

end
end

%%% TwoDwithinScatter() %%%
%---input---
%data: dxdxn data matrix
%index: index of class
%---output---
%Swi matrix of the class
function[SWi]=TwoDwithinScatter(data, index)
temp=data(:,:,index); %subset by third dimension
MU=mean(temp,3); %take mean along 3rd dimension
n=size(temp);
SWi=zeros();
temp2=zeros();

parfor i=1:n(3) %iterate over 3rd dimension
temp2=(temp(:,:,i)-MU); %center image
SWi=SWi+(temp2')*temp2;

end
end

%%% TwoDbetweenScatter() %%%
%---input---
%data: dxdxn data matrix
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%labels: nx1 label vector
%---output---
%Sb matrix
function[Sb]=TwoDbetweenScatter(data, labels)
classes=unique(labels);
L=length(classes);
Sb=zeros();
grandMU=mean(data, 3); %grand mean along 3rd dimension

for i=1:L %iterate over number of classes
tempIndex=find(labels==(i-1)); %find indices corresponding to ith class
temp=data(:,:,tempIndex); %subset by indices
N=size(temp,3);
tempMU=mean(temp,3); %mean of subset over 3rd dimension
temp2=tempMU-grandMU; %mean minus grand mean
Sb=Sb+N.*(temp2')*temp2;

end
end

%%% TwoDkNNclassify() %%%
%kNN using matrix norms
%---input---
%k: neighborhood size
%newPoint:
%Xtr: dxn training data
%ytr: training labels
%metric: 'fro'=L2 norm, 'col'=feature vector norm, 1=L1 norm
%---output---
%class: predicted class

function[class]=TwoDkNNclassify(k,newPoint,Xtr, ytr,metric)
n=size(Xtr);
temp=zeros(n(3),1);
%find way to apply columnDistance to array

if strcmp(metric,'fro')
for i=1:n(3)

temp(i)=norm(Xtr(:,:,i)-newPoint,'fro');
end

elseif strcmp(metric,'col')
for i=1:n(3)

temp(i)=sum(sqrt(sum((Xtr(:,:,i)-newPoint).ˆ2)));
end

elseif metric==1
for i=1:n(3)

temp(i)=norm(Xtr(:,:,i)-newPoint,metric);
end

end

[~,I]=sort(temp);
nbhd=I(1:k);
nbhd=ytr(nbhd);
class=mode(nbhd);
end
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% CAMCOS globalPCALIBSVMpairs Version: 1.0 date: 10/23/15
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear; close all; clc

load('mnist60k10datadskw','ytr','ytst') %load labels deskewed dataset.
%load deskewed dataset for up to 300 principal compoents.
load('globalPCA300skw','XtrPCA','XtstPCA')
N_test = length(ytst); M = nchoosek(0:9,2);
numModel = size(M,1); %number of models (45 in total)
c = 3; % cost parameter in options.
gamma = [0.01:0.002:0.05]; gVals = length(gamma);
C = 300; % up to how many components to test? Only multiples of 10.
for N_vars = 10:5:60;

Errors = zeros(gVals,1);
fprintf('Beginning global PCA + LIBSVM Pairs Analysis with c fixed\n')
for i = 1:gVals
options = ['-s 0 -c 4 -t 2 -g ', num2str(gamma(i)), ' -q'];
[~, Errors(i)] = LIBSVMPairMethod(XtrPCA(:,1:N_vars), ytr, XtstPCA(:,1:N_vars), ←↩

ytst, N_test, M, numModel, options);
end
figure;
plot(gamma, Errors*100,'-b.', 'Markersize', 14);
title(strcat('Error plot for global PCA + LIBSVM Pairs using c = ', num2str(c), '←↩

and PCA = ', num2str(N_vars)));
set(gca,'xtick', gamma); xlabel('gamma values'); grid on;
ylabel('Percent Error');

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%% CAMCOS Function: LIBSVMPairMethod Version: 1.1 date: 10/11/15
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Assumes that data set is in correct format i.e., each
% row is an observation. globalPCASVMPair builds pair n(n+1)/2 models.
% For example, 0 vs 1,...,0 vs 9,..., 8 vs 9. Each model is applied to each
% new observation. For that observation the class that was predicted most
% often is assigned as the predicted class.
% c = matrix of all possible combinations (45 total) so that numModel = 45.

function [pred, Error] = LIBSVMPairMethod(Xtr, ytr, Xtst, ytst, N_test, M, numModel←↩
, options)

PRED = zeros(N_test, numModel); %each model's predition is stored

% Model training and prediction.
fprintf('Begin model training. Ignore the following 45 outputs \n')

for i = 1:numModel
l1 = ytr == M(i,1); l2 = ytr == M(i,2);
X = [Xtr(l1,:); Xtr(l2,:)];
y = [ytr(l1); ytr(l2)];
model = svmtrain(y, X , options);
[PRED(:,i)] = svmpredict(ytst, Xtst, model);

end
fprintf('Ending model training. \n')

%Calculating Classification Error
pred = mode(PRED,2);
Error = 1 - sum(pred == ytst)/N_test;
fprintf('Misclassification Error for SVM Pair method = %.2f%% \n', Error*100)
end

#################################################################################
################## METHOD: local pca + 1 VS rest SVM ######################
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# local pca: perform pca on each digit(0,1,...,9),
# which leads to 10 reduced subspaces based on 10 different classes.

# We project the whole training data set and the test data set on the 10 subspaces

# and train 10 1VSrest SVM. There are 10 scores for each test data in total,
# and we predict the test data set into the class which has the largest score.

##################################################################################

__author__ = 'Dan Li'

import numpy as np

import random

from sklearn import cross_validation, svm, datasets

from sklearn import metrics

import time, sys

import scipy.io

from sklearn.datasets import make_blobs

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D

# load MNIST data from .mat file

Xtr = train_data['trainImages'].T
ytr = train_data['trainLabels'].ravel()
Xtst = test_data['testImages'].T
ytst = test_data['testLabels'].ravel()
num_train = ytr.shape[0]
print Xtr.shape, ytr.shape, num_train

num_test = ytst.shape[0]
print Xtst.shape, ytst.shape, num_test

#exit(0)

# define the pca function
def pca_from_svd(data, n_comp):

"""
:param data:
:param n_comp:
:return subspace of top n_comp PCA components

"""
data = data - np.mean(data,axis=0)
U,S,Vt = np.linalg.svd(data,full_matrices=False)
# sort the PCs by descending order of the singular values (i.e. by the

# proportion of total variance they explain)
ind = np.argsort(S)[::-1]
V = Vt.T

V = V[:, ind]
return V[:,0:n_comp]

# perform PCA on 0, 1, 2...9 respectively
# and obtain the subspace with ncomp top pca components

ncomp_list = [25,30,35,40,45,50,55,60,65,70,75,80,85,90,95,100]
for ncomp in ncomp_list:

num_class = 10
groups = {}
sub_spaces = {}
labels = {}
for i in range(num_class):

labels[str(i)] = np.where(ytr==float(i),1.,0.)
groups[str(i)] = Xtr[labels[str(i)]==1.]
sub_spaces[str(i)] = pca_from_svd(groups[str(i)],ncomp)

start = time.time()
# initialize the model (5, 0.034)
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para_C = 1
p=1.0/ncomp
para_gamma = [p,p,p,p,p,p,p,p,p,p]

# for each class (0,1,2...9), project all the data to the corresponding subspace
# and construct 10 one-vs-rest binary SVC

clf = {}
for i in np.arange(num_class):

print 'parameter: %s' %str(para gamma[i])
clf[str(i)] = svm.SVC(kernel='rbf', C=para_C, gamma=para_gamma[i])
project_X = np.dot(Xtr-np.mean(groups[str(i)],axis=0),sub_spaces[str(i)])
clf[str(i)].fit(project_X, labels[str(i)])

# pass the projected test data to the 10 SVC.

# The SVC that predict 1 will be nominated as the predicted class.

# if multiple SVC predict 1,
# then pick the smallest index of SVC as the predicted class

bin_predicted_y = np.zeros([num_class, ytst.shape[0]])
for i in np.arange(num_class):

project_test_X = np.dot(Xtst-np.mean(groups[str(i)],axis=0), sub_spaces[str(i←↩
)])

bin_predicted_y[i,:] = clf[str(i)].decision_function(project_test_X)

predicted_y = np.argmax(bin_predicted_y,axis=0)
print '--------report-----------\n'
print '-----------parameter----------'
print 'C = %s, gamma = %s, pca = %s' %(str(para C), str(para gamma), str(ncomp))
print 'confusion matrix: \n %s' %metrics.confusion matrix(ytst, predicted y)
print 'precision score: %s'

%metrics.precision score(ytst,predicted y,average='weighted')

print "---- %s sec-----" %(time.time()-start)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% Local Pairwise Dimension Reduction + SVM %%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%% pairwiseTransformSVM() %%%%%%%%%%%%
%---input---
%d: number of dimensions
%cost: SVM cost parameter
%Xtr: observations in columns
%ytr: labels
%Vmats: C(n,2)x1 cell array containing pairwise transformation matrices
%params: parameters to be passed on to svmtrain(). If using local variance for ←↩

Gaussian parameter, is nx1
%matrix
%cent: 'center' to center data about the mean of the ith pair
%---output---
%C(n,2)x2 cell array with trained SVM model and pair mean

function[pairModel]=pairwiseTransformSVM(d,cost, Xtr, ytr, VMats, params, cent)

C=length(VMats);
pairModel=cell(C,1);
means=cell(C,1);

for i=1:C %iterates over pairs
sub=VMats(i).set.classes; %get transformation

%subset labels and data by class pair
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indx=ismember(ytr,sub);
indx=find(indx==1);
labsTemp=ytr(indx);
trainTemp=Xtr(:,indx);

%center data
if strcmp(cent,'center')

[~,N]=size(trainTemp);
means{i}=mean(trainTemp,2); %mean of paired data
trainTemp=trainTemp-repmat(means{i},1,N); %center pair data

else
[N,~]=size(trainTemp);
means{i}=zeros(N,1); %mean of paired data

end

%apply VMat pair transformation to pair data
Vtemp=VMats(i).set.mat;
trainTemp=Vtemp(:,1:d)'*trainTemp; %d=features

%processes 'params'
if size(params,1) > 1

i1=sub(1)+1; i2=sub(2)+1; %get indices of class pair
params2=params(i1)*params(i2); %calculates Gaussian shape parameter

elseif (size(params,1)==1) | | (isempty(params)==1)
params2=params; %passes user-defined scalar parameter

else
warning('Warning! Error in variable params')

end

%format parameters for libsvm
params2=strcat('-t 2',{' '},'-g',{' '},num2str(params2),'-c',{' '},num2str(cost←↩

));
%train SVM model for transformed pair data
pairModel{i}=svmtrain(labsTemp,trainTemp',params2);

end
pairModel=[pairModel,means];
end

%%%%%%%%%%%% pairtransformPredict() %%%%%%%%%%%%
%predicts new data using C(n,2) SVM models. For each new observation, is
%predicted using all models, then assigned to mode of the results
%---input---
%d: dimensions
%inData: data
%svmmodels: C(n,2)x2 cell array
%cent: 'center' to use center passed from pairwiseTransformSVM()
%Vmat:
%---output---
%nx1 results vector
function[results1]=pairtransformPredict(d, inData, svmmodels, Vmat, cent)

newData=inData;
C=length(svmmodels);
n=size(newData,2);
results=zeros(n,C);
dValues=results;

for k=1:C %iterate over pairs
meanTemp=svmmodels{k,2}; %get mean of kth train pair
if strcmp(cent, 'center')

temp=newData-repmat(meanTemp,1,n); %center test data around kth pair center
elseif strcmp(cent, 'nocenter')

temp=newData;
end
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%temp=newData;
%transform test data
modelTemp=svmmodels{k,1}; %get kth svm classifier
Vtemp=Vmat(k).set.mat; %get kth pair transformation matrix
temp=Vtemp(:,1:d)'*temp; %project test data into
[testResults, ~, dVal]=svmpredict(zeros(n,1),temp',modelTemp); %classification
dValues(:,k)=dVal; %decision value
results(:,k)=testResults; %results of kth trial in row

end

W=pairWeights(results,dValues,'none');
classes=unique(results);
results1=zeros(n,1);

%for j=1:n %apply pairVote()
% results1(j)=pairVote(results(j,:),W(j,:),classes);
%end
results1 = mode(results,2);
end

param1 = list("objective" = "multi:softmax","eval_metric" = "mlogloss","num_class" = ←↩
10,

"eta" = 0.18, "colsample_bytree"=0.5,"subsample" = 3, "verbose"= 0)
bst.cv2 = xgb.cv(param = param1, data = Xtr, label = ytr, nfold = cv.nfold, nrounds =←↩

cv.nround)
plot(bst.cv2$test.mlogloss.mean, lty = 1)
nround2 = which(bst.cv2$test.mlogloss.mean == min(bst.cv2$test.mlogloss.mean))
nround2

# resul is nround = 280
###########################################
# train the model

###########################################
bst2 = xgboost(data=Xtr, label = ytr, param = param1, nrounds = nround2)

###########################################
# predict the model & give Error

###########################################
ypred2 = predict(bst2, Xtst)

Error = sum(ypred2 != ytst)/N.test;
Error*100

###########################################
# Results + parameters

###########################################
#param1 = list("objective" = "multi:softmax","eval_metric" = "mlogloss",
# "num_class" = 10, "eta" = 0.2, "colsample_bytree"=0.5,"subsample" = 1)
#nround2=317, Error = 1.86%
#param1 = list("objective" = "multi:softmax","eval_metric" = "mlogloss",
#"num_class" = 10, "eta" = 0.2, "colsample_bytree"=0.5,"subsample" = 3)
#nround = 267, Error = 1.83%
#param1 = list("objective" = "multi:softmax","eval_metric" = "mlogloss",
#"num_class" = 10, "eta" = 0.2, "colsample_bytree"=0.5,"subsample" = 6)
#nround = 260, Error = 1.86
#param1 = list("objective" = "multi:softmax","eval_metric" = "mlogloss",
# "num_class" = 10, "eta" = 0.4, "colsample_bytree"=0.5,"subsample" = 3)
#nround = 169, Error = 2.00%
#param1 = list("objective" = "multi:softmax","eval_metric" = "mlogloss","num_class" =←↩

10,
#"eta" = 0.18, "colsample_bytree"=0.5,"subsample" = 3, "verbose"= 0)
#nround = 308, Error = 1.83%
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library(xgboost)
load("mnistdata60k10kdskw.RData")
N.tst = length(ytst)

###########################################
# cross-validation to choose the parameters

###########################################
param = list("objective" = "multi:softmax","eval_metric" = "merror", "num_class" = ←↩

10,
"eta" = 0.18, "colsample_bytree"= 0.45,"subsample" = 3, "verbose"= 0, "←↩

seed" = 10)

cv.nround = 500
cv.nfold = 5

bst.cv = xgb.cv(param = param, data = Xtr, label = ytr, nfold = cv.nfold, nrounds = ←↩
cv.nround)

plot(bst.cv$test.merror.mean, lty = 1)
nround = which(bst.cv$test.merror.mean == min(bst.cv$test.merror.mean))
###########################################
# train the model

###########################################
nr = length(nround)
error = rep(0,nr)
ypred = matrix(rep(0,N.tst*nr),N.tst,nr)

for(k in 1:nr){
bst = xgboost(data = Xtr, label = ytr, param = param, nrounds = nround[k])
ypred[,k] = predict(bst, Xtst)
error[k] = sum(ypred[,k] != ytst)/N.tst

}

indx = which( min(error) == error)
nround[indx]

###########################################
# predict the model

###########################################

#Error
Error = sum(ypred[,indx] != ytst)/N.test
cat('Misclassification Error for xgboost pair is Error =', Error*100, '%')

###########################################
# prepare for output (save data)
###########################################

write.csv(ypred, 'xgboostdskwpred.csv', quote = F, row.names = F)

###########################################
# Results + parameters

###########################################
#param = list("objective" = "multi:softmax","eval_metric" = "merror", "num_class" = ←↩

10,
# "eta" = 0.18, "colsample_bytree"= 0.45,"subsample" = 3, "verbose"= 0, "←↩

seed" = 10)
# Error = 1.41%, nround = 498
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