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1. Introduction

This handout covers some advanced linear algebra and its use in dimen-
sionality reduction and spectral clustering in the setting of unsupervised
learning.

2. Review of necessary linear algebra

Notation. Vectors are denoted by boldface lowercase letters (such as
a,b). To indicate their dimensions, we use notation like a ∈ Rn to represent
a n-dimensional vector. The ith element of a is written as ai or a(i). We
denote the constant vector of one as 1 (with its dimension implied by the
context).

Matrices are denoted by boldface uppercase letters (such as A,B). Sim-
ilarly, we write A ∈ Rm×n to indicate its size. The (i, j) entry of A is
denoted by aij or A(i, j). The ith row of A is denoted by A(i, :) while
its columns are written as A(:, j), as in MATLAB. We use I to denote the
identity matrix (with its dimension implied by the context).

2.1. Matrix multiplication. Let A ∈ Rm×n and B ∈ Rn×k be two
real matrices. Their product is an m× k matrix C = (cij) with entries

cij =
n∑

`=1

ai`b`j = A(i, :) ·B(:, j).

It is possible to obtain one full row (or column) of C via matrix-vector
multiplication:

C(i, :) = A(i, :) ·B
C(:, j) = A ·B(:, j)

The full matrix C can be written as a sum of rank-1 matrices:

C =
n∑

`=1

A(:, `) ·B(`, :).

When one of the matrices is a diagonal matrix, we have the following rules:

A︸︷︷︸
diagonal

B =

a1

. . .

an


B(1, :)

...
B(n, :)

 =

a1B(1, :)
...

anB(n, :)


A B︸︷︷︸

diagonal

= [A(:, 1) . . .A(:, n)]

b1 . . .

bn

 = [b1A(:, 1) . . . bnA(:, n)]

Finally, below are some identities involving the vector 1:

11T =

1 1 . . . 1
...

...
. . .

...
1 1 . . . 1

 , 1T1 = 1

A1 =
∑
j

A(:, j), 1TA =
∑
i

A(i, :), 1TA1 =
∑
i

∑
j

A(i, j).
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Example 2.1. Let

A =

 3 0 0
5 1 −1
−2 2 4

 , B =

1 0
0 −1
2 3

 , Λ1 =

1
0
−1

 , Λ2 =

(
2
−3

)
.

Find the products AB,Λ1B,BΛ2,1
TB,B1 and verify the above rules.

2.2. Eigenvalues and eigenvectors. Let A be an n× n real matrix.
The characteristic polynomial of A is

p(λ) = det(A− λI).

The (complex) roots λi of the characteristic equation p(λ) = 0 are called
the eigenvalues of A. For a specific eigenvalue λi, any nonzero vector vi

satisfying

(A− λiI)vi = 0

or equivalently,

Avi = λivi

is called an eigenvector of A (associated to the eigenvalue λi). All eigen-
vectors associated to λi span a linear subspace, called the eigenspace. It is
denoted as E(λi). The dimension gi of E(λi) is called the geometric multi-
plicity of λi, while the degree ai of the factor (λ− λi)ai in p(λ) is called the
algebraic multiplicity of λi. Note that we must have

∑
ai = n and for all i,

1 ≤ gi ≤ ai.

Example 2.2. For the matrix A given in the previous example, find the
above quantities.

The following theorem indicates that the trace and determinant of a
square matrix can both be computed from the eigenvalues of the matrix.

Theorem 2.1. Let A be a real square matrix whose eigenvalues are
λ1, . . . , λn (counting multiplicities). Then

det(A) =
n∏

i=1

λi and trace(A) =
n∑

i=1

λi.

Example 2.3. For the matrix A defined previously, verify the identities
in the above theorem.

Definition 2.1. A square matrix A is diagonalizable if it is similar to
a diagonal matrix, i.e., there exist an invertible matrix P and a diagonal
matrix Λ such that

A = PΛP−1.

Remark. If we write P = (p1, . . . ,pn) and Λ = diag(λ1, . . . , λn), then
the above equation can be rewritten as Api = λipi, for all 1 ≤ i ≤ n. This
shows that the λi are the eigenvalues of A and pi the associated eigenvectors.
Thus, the above factorization is called the eigenvalue decomposition of A.

Example 2.4. The matrix

A =

(
0 1
3 2

)
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is diagonalizable because(
0 1
3 2

)
=

(
1 1
3 −1

)(
3
−1

)(
1 1
3 −1

)−1

but B =

(
0 1
−1 2

)
is not (how to determine this?).

The following theorem provides a way for checking the diagonalizability
of a square matrix.

Theorem 2.2. A matrix A ∈ Rn×n is diagonalizable if and only if it
has n linearly independent eigenvectors.

This theorem immediately implies the following results.

Corollary 2.3. The following matrices are diagonalizable:

• Any matrix whose eigenvalues all have identical geometric and al-
gebraic multiplicities, i.e., gi = ai for all i;
• Any matrix with n distinct eigenvalues;

2.3. Symmetric matrices. A symmetric matrix is a square matrix
A ∈ Rn×n whose transpose coincides with itself: AT = A. Recall also that
an orthogonal matrix is a square matrix whose columns and rows are both
orthogonal unit vectors (i.e., orthonormal vectors):

QTQ = QQT = I,

or equivalently,

Q−1 = QT .

Theorem 2.4. Let A ∈ Rn×n be a symmetric matrix. Then

• All the eigenvalues of A are real;
• A is orthogonally diagonalizable, i.e., there exists an orthogonal

matrix Q and a diagonal matrix Λ such that

A = QΛQT .

Remark.

• For symmetric matrices, the eigenvalue decomposition is also called
the spectral decomposition.
• The converse is also true. Therefore, a matrix is symmetric if and

only if it is orthogonally diagonalizable.
• Write Λ = diag(λ1, . . . , λn) and Q = [q1, . . . ,qn]. Then

A =
n∑

i=1

λiqiq
T
i .

• We often sort the diagonals of Λ in decreasing order:

λ1 ≥ λ2 ≥ · · · ≥ λn.

Example 2.5. Find the spectral decomposition of the following matrix

A =

(
0 2
2 3

)
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Answer.

A =
1√
5

(
1 −2
2 1

)
·
(

4
−1

)
· 1√

5

(
1 −2
2 1

)T

Definition 2.2. A symmetric matrix A ∈ Rn×n is positive semidefinite
if xTAx ≥ 0 for all x ∈ Rn. It is positive definite if xTAx > 0 whenever
x 6= 0.

Theorem 2.5. A symmetric matrix A is positive definite (semidefinite)
if and only if all the eigenvalues are positive (nonnegative).

Example 2.6. Determine if the following matrix is positive definite (or
semidefinite):

A =

 2 −1 0
−1 2 −1
0 −1 2


2.4. MATLAB programming. The following list contains some basic

MATLAB functions that apply to or generate matrices:

• diag
• trace
• det
• eig, eigs
• repmat
• ones, zeros
• eye
• rand

Example 2.7. Redo all previous examples in MATLAB (this is a chance
for you to get familiar with the MATLAB matrix operations).

Example 2.8. For the matrices B,Λ1,Λ1 defined in Example 2.1 (sup-
pose they are already defined in MATLAB), compare the following ways of
doing matrix products in MATLAB:

• Λ1B: (1) lambda1*B (2) repmat(diag(lambda)).*B
• BΛ2: (1) B*lambda2 (2) B.*repmat(diag(lambda2)’)

Do they give you the same product matrix in each case? Which approach
is faster?
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3. Matrix SVD and its applications

3.1. Decomposition of rectangular matrices. Let X ∈ Rn×d, which
can be thought of a data matrix with rows representing points. Define
C = XTX ∈ Rd×d. Then C is symmetric and positive semidefinite: CT =
(XTX)T = XTX = C, and vTCv = vTXTXv = (Xv)T (Xv) = ‖Xv‖2 ≥ 0
for any v ∈ Rd.

We apply the spectral decomposition to C to derive the singular value de-
composition of X. First, there exists an orthogonal matrix V = [v1, . . . ,vd] ∈
Rd×d and a diagonal matrix Λ = diag(λ1, . . . , λd) ∈ Rd×d with λ1 ≥ · · · ≥
λd ≥ 0 such that

C = XTX = VΛVT .

Rewrite the above equation as

XTXV = VΛ.

Consider, for each 1 ≤ i ≤ d, the ith column

(1) XTXvi = λivi = σ2
i vi,

where σi =
√
λi. For all σ1 ≥ · · · ≥ σr > 0, where r = rank(C) = rank(X),

define

ui =
1

σi
Xvi ∈ Rn.

Claim: u1, . . . ,ur are orthonormal vectors. The above is equivalent to

Xvi = σiui, i = 1, . . . , r.

For all r < i ≤ n select unit vectors ui ∈ Rn such that

U = [u1, . . . ,ur,ur+1, . . . ,un] ∈ Rn×n

is an orthogonal matrix. Let Σ be an n×d matrix whose entries are all zero
except the top r × r block

Σ(1 : r, 1 : r) = diag(σ1, . . . , σr).

It is easy to verify that with the above choices of U and Σ, we must have

XV = UΣ

Therefore, we have proved the following result.

Theorem 3.1. For any matrix X ∈ Rn×d, there exist orthogonal matri-
ces U ∈ Rn×n,V ∈ Rd×d and a “diagonal” matrix Σ ∈ Rn×d (with nonneg-
ative entries) such that

Xn×d = Un×nΣn×dV
T
d×d.

Definition 3.1. The above decomposition of any matrix X ∈ Rn×d is
called the Singular Value Decomposition (SVD) of X:

• The diagonals of Σ are called the singular values of X
• The columns of U are called the left singular vectors of X
• The columns of V are called the right singular vectors of X

Remark. It is easy to see that the left and right singular vectors of X are
the eigenvectors of XTX and XXT respectively while the singular values,
once squared, are the common eigenvalues of the two product matrices.
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Example 3.1. Compute the SVD of

X =

1 −1
0 1
1 0

 .

Answer.

X =


2√
6

0 1√
3

− 1√
6

1√
2

1√
3

1√
6

1√
2
− 1√

3

 ·
√3

1

 ·( 1√
2

1√
2

− 1√
2

1√
2

)T

Remark. The above decomposition is often called the full SVD of X, to
distinguish from other versions:

• Economic/compact SVD: Let r = rank(X). Define

Un×r = [u1, . . . ,ur] ∈ Rn×r

Vd×r = [v1, . . . ,vr] ∈ Rd×r

Σr×r = diag(σ1, . . . , σr) ∈ Rr×r

We then have

X = Un×rΣr×rV
T
d×r.

• Rank-1 decomposition:

X =

r∑
i=1

σiuiv
T
i .

This has the interpretation that X is a weighted sum of rank-one
matrices.

In sum, X = UΣVT where both U,V have orthonormal columns and Σ is
diagonal. Furthermore, XT = VΣTUT is the SVD of XT . Lastly, for any
version, the SVD of a matrix is not unique.

3.2. Low-rank approximation of matrices. Recall that a norm as-
sociated with a vector space V is a function ‖ · ‖ : V → R that satisfies three
conditions:

• ‖v‖ ≥ 0 for all v ∈ V and ‖v‖ = 0 iff v = 0
• ‖kv‖ = |k|‖v‖
• ‖v1 + v2‖ ≤ ‖v1‖+ ‖v2‖ for all v1,v2 ∈ V

Example 3.2. In Rd, there are at least three different norms:

• 2-norm (or Euclidean norm): ‖x‖2 =
√∑

x2
i =
√

xTx

• 1-norm (Taxicab norm or Manhattan norm): ‖x‖1 =
∑
|xi|

• ∞-norm (maximum norm): ‖x‖∞ = max |xi|
Whenever unspecified, it is understood as the Euclidean 2-norm.

We next define matrix norms. Just like vector norm is used to measure
the magnitude of vectors (‖v‖) and quantify the distance between vectors
(‖u− v‖), matrix norm is used similarly.
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Definition 3.2. The Frobenius norm of a matrix is defined as

‖A‖F =

√∑
i,j

a2
ij

Example 3.3. In the last example, ‖X‖F = 2.

Proposition 3.2.

‖A‖2F = trace(ATA) = trace(AAT )

Theorem 3.3. For any matrix A ∈ Rn×d,

‖A‖2F =
∑

σ2
i

A second matrix norm is the 2-norm, or the spectral/operator norm.

Definition 3.3. The spectral/operator norm of a matrix is defined as

‖A‖2 = max
q∈Rd:‖q‖2=1

‖Aq‖2

Theorem 3.4. For any matrix A ∈ Rn×d, a maximizer of the above
problem is the first right singular vector v1 of A and the maximum is

‖A‖2 = σ1.

Proof. Consider the full SVD of A = UΣVT . For any unit vector q ∈
Rd, write q = Vα for some unit vector α ∈ Rd. Then Aq = A(Vα) = UΣα.

Accordingly, ‖Aq‖2 = ‖UΣα‖2 = ‖Σα‖2 =
√∑

σ2
i α

2
i ≤ σ1, where the

equality holds when α = ±e1 and correspondingly, y = ±Ve1 = ±v1. �

Example 3.4. In the last example, ‖X‖2 =
√

3.

Corollary 3.5. Let A ∈ Rn×d. Then for all x ∈ Rd,

‖Ax‖2 ≤ ‖A‖2‖x‖2 = σ1‖x‖2.
We note that the Frobenius and spectral norms of a matrix correspond

to the 2- and ∞-norms of the vector of singular values. The 1-norm of
singular values is called the nuclear norm of A.

Definition 3.4. The nuclear norm of a matrix A ∈ Rn×d is

‖A‖∗ =
∑

σi.

Example 3.5. In the last example, ‖X‖∗ =
√

3 + 1.

We now consider the low rank matrix approximation problem: For any
A ∈ Rn×d and k ∈ Z+, solve

min
B∈Rn×d : rank(B)=k

‖A−B‖

where ‖ · ‖ could be any matrix norm (such as Frobenius, spectral).

Definition 3.5. For any A ∈ Rn×d and 1 ≤ k ≤ r = rank(A), define
the truncated SVD of A as

Ak =
k∑

i=1

σiuiv
T
i ∈ Rn×d.

Clearly, rank(Ak) = k.
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Theorem 3.6. For each 1 ≤ k ≤ r, Ak is the best rank-k approximation
to A ∈ Rn×d under the Frobenius or spectral norm:

min
B : rank(B)=k

‖A−B‖F = ‖A−Ak‖F =

√∑
i>k

σ2
i

min
B : rank(B)=k

‖A−B‖2 = ‖A−Ak‖2 = σk+1.

Remark. The theorem still holds true if the constraint rank(B) = k is
relaxed to rank(B) ≤ k.

Example 3.6. In the last example, the best rank-1 approximation (un-
der the Frobenius/spectral norm) is

X1 =

 1 −1
−1

2
1
2

1
2 −1

2

 .

Example 3.7. Take a digital image (matrix) and apply SVD to obtain
low-rank approximations (an display as images):

Am×n ≈ Um×kΣk×kV
T
n×k =

k∑
i=1

σiuiv
T
i .

This example shows that we can use SVD for image compression: By storing
U,Σ,V instead of A, storage is reduced from mn to k(m+ n+ 1).
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Figure 1. Illustration of the orthogonal fitting problem

3.3. Orthogonal Best-Fit Subspace. Consider the following prob-
lem: Given n data points xi ∈ Rd, find the “best-fit” k-dimensional plane
(see Fig. 1) which minimizes the total squared orthogonal error

n∑
i=1

‖xi − PS(xi)‖22

Remark. Compare with the least squares fitting problem in regression.
Suppose a k-dimensional plane S is used to fit the data. Let m ∈ Rd

represent a point in S and B ∈ Rd×k an orthonormal basis for it (i.e., BTB =
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Ik×k, but we do not have BBT = Id×d for k < d) so that a parametric
equation for the plane is x = m + Bα. Since

PS(xi) = m + BBT (xi −m).

we may rewrite the above problem as

min
m∈Rd,B∈Rd×k

∑
‖xi −m−BBT (xi −m)‖2

Using multivariable calculus, we can show that an optimal m is x̄ = 1
n

∑
xi.

Plugging in x̄ for m and letting x̃i = xi − x̄ gives that

min
B

∑
‖x̃i −BBT x̃i‖2.

In matrix notation, this is

min
B
‖X̃− X̃BBT ‖2F

where X̃ = [x̃1, . . . , x̃n]T ∈ Rn×d. The minimum is attained when X̃BBT =

X̃k, the best rank-k approximation of X̃, and the corresponding minimizer

is the matrix consisting of the top k right singular vectors of X̃:

B = V(:, 1 : k), where X̃ = UΣVT .

We have thus proved the following result.

Theorem 3.7. A best-fit k-dimensional subspace to the data is given by

x = m + Bα

where

m = center, B = top k right singular vectors of centered data X̃.

Moreover, the projection of X̃ onto the best-fit k-dimensional plane is X̃k.

Example 3.8. MATLAB demonstration.

3.4. Solving redundant linear systems. Consider solving a redun-
dant linear system Ax = b where A ∈ Rm×n is a tall matrix (m > n) with
full column rank and x,b ∈ Rn. Such a system typically does not have an
exact solution, so instead we seek an approximate solution x∗ that optimally
balance between all equations by solving

min
x∈R
‖Ax− b‖2

Using multivariable calculus, one can show that the optimal solution,
often called the least squares solution, is

x∗ = (ATA)−1ATb

The matrix A† = (ATA)−1AT is called the pseudoinverse of A: A†A = In.
Here we show how to use the matrix SVD to solve the problem: Write

A = UΣVT . Then we can rewrite the above problem as

min
x∈R
‖UΣVTx− b‖2

The optimal x must satisfy

ΣVTx∗ = UTb
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which yields that
x∗ = VΣ−1UTb.

Example 3.9. Show that A† = VΣ−1UT . This implies that the two
different methods actually yield the same solution.



14 CONTENTS

Practice problems set 1

(1) Find, by hand, the economic SVD of the following matrix

A =


0 2
2 0
1 3
3 1


What are the different norms (Frobenius, Spectral and Nuclear) of
this matrix?

(2) Now for the matrix in Question 1, use MATLAB to find the full
SVD.

(3) Find the best-fit line (under the orthogonal error criterion) to the
points in Question 1 (i.e., the rows of A) and plot it with the data
(by hand or computer). What are the coordinates of the projections
of the original data onto the best-fit line?

(4) Let A ∈ Rn×n be a square, invertible matrix and the SVD is

A =

n∑
i=1

σiuiv
T
i .

Show that the inverse of A is

A−1 =
n∑

i=1

1

σ i
viu

T
i .

(5) Let A ∈ Rm×n be a matrix and ~σ the vector of its singular values.
Which of the following norms are equal to each other? Draw a line
between those that are equal.

‖A‖F ‖~σ‖∞
‖A‖2 ‖~σ‖1
‖A‖∗ ‖~σ‖2

(6) First show that the product of two orthogonal matrices (of the same
size) is also an orthogonal matrix. Then use this fact to show that
(a) If L ∈ Rm×m is orthogonal and A ∈ Rm×n is arbitrary, then

the product LA has the same singular values and right singular
vectors with A.

(b) If A ∈ Rm×n is arbitrary and R ∈ Rn×n is orthogonal, then
the product AR has the same singular values and left singular
vectors with A.

Note that an immediate consequence of the above results is that

‖LA‖ = ‖A‖ = ‖AR‖
regardless of the norm (Frobenius/spectral/nuclear) used. Why?

(7) Let A ∈ Rm×n with rank(A) = r. Show that
(a) ‖A‖2 ≤ ‖A‖F ≤

√
r‖A‖2

(b) ‖A‖F ≤ ‖A‖∗ ≤
√
r‖A‖F

(8) For any matrix A ∈ Rm×n of full column rank, its pseudoinverse is
defined as A† = (ATA)−1AT . Show that if the full SVD of A is
A = UΣVT , then A† = VΣ−1UT .
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(9) Find the pseudoinverse of the matrix A in Question 1. What is the
least squares solution of the equation Ax = 1?

(10) Find a digital image from your album or the internet and compress
it by using low rank approximation with various k. Which k seems
to be sufficient?
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4. Dimensionality Reduction

Many data sets live in high dimensional spaces, making their storage
and processing very costly:

• MNIST Handwritten Digits (http://yann.lecun.com/exdb/
mnist/): This data set consists of 70,000 digital images of hand-
written digits that are collected from more than 250 different peo-
ple. Each image is of size 28 × 28, and will be converted to a
784-dimensional vector.
• USPS Zip Code Data (http://web.stanford.edu/~hastie/
ElemStatLearn/datasets/zip.info.txt). This data set contains
9298 handwritten digits automatically scanned from envelopes by
the U.S. Postal Service. The scanned digits are saved in 16 × 16
grayscale images, but will be vectorized into R256.
• Yale B Faces (http://vision.ucsd.edu/~iskwak/ExtYaleDatabase/
ExtYaleB.html). The extended Yale Face Database B contains
16128 images of 28 human subjects under 9 poses and 64 illumina-
tion conditions. Each image is of size 192× 168, first downsampled
to and then vectorized.
• 20 Newsgroups (http://qwone.com/~jason/20Newsgroups/). This

data set is a collection of 18774 newsgroup documents, partitioned
(nearly) evenly across 20 different newsgroups. Each document is
also vectorized by counting the frequency of each word occurring in
the document. The document vectors all have the same dimension
of 61188, which is the total number of unique words in the text
corpus, but they are extremely sparse.
• ISOmap Data (http://web.mit.edu/cocosci/isomap/datasets.
html).

So in practice we often perform some sort of dimensionality reduction be-
forehand to project the data into a low dimensional space (for visualization
and easy processing).

4.1. Principal component analysis (PCA). PCA projects the data
onto a best-fit k-dimensional plane, which is determined by truncated SVD:

X̃ ≈ Un×kΣk×k︸ ︷︷ ︸
coefficients

·VT
d×k︸ ︷︷ ︸

basis

= X̃k︸︷︷︸
coordinates of projection

The first k columns of V represent the dominant directions of the data while

the coefficients Un×kΣk×k = X̃n×dVd×k provide a new representation for the
given data (with respect to the principal basis). We call them the principal
components of the original data and use them as a low (k) dimensional
embedding.

It is already known that the PCA plane minimizes the total squared
orthogonal error. The following theorem indicates that PCA selects the
principal directions to maximize the variances of the projections.
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Theorem 4.1. For each 1 ≤ j ≤ k, the variance of the projection of X̃
onto the vj is σ2

j . Moreover, these variances are the largest possible:

σ2
1 = max

v: ‖v‖2=1
‖X̃v‖22

σ2
2 = max

v: ‖v‖2=1,vT1 v=0
‖X̃v‖22

...

Example 4.1 (MNIST handwritten digit 1).

Below we address some practical questions.
Question 1: How do we select k? For visualization purposes k

is normally set to 2 or 3; but for other machine learning tasks (such as
clustering and classification), k needs to be much higher to avoid significant
loss of information. There are two simple ways to select k practically:

• Set k = # dominant singular values (effective rank)

X̃ =
∑
i

σiuiv
T
i

• Choose k such that the top k principal directions explain a certain
amount of variance of the data (e.g., 95%):∑k

i=1 σ
2
i∑

σ2
i

> 95%

Each criterion corresponds to a plot.
Question 2: What if PCA is applied to nonlinear data? PCA

projection can be rewritten as follows:

yi = (xi − x̄)TV(:, 1 : k), i = 1, 2, . . . , n

where x̄ = 1
n

∑
xi is the center of the data set and the columns of V are

the principal directions directly learned from centered data:

X̃ ≈ UΣVT .

This shows that PCA is a linear embedding technique and will not capture
the nonlinear geometry.

Example 4.2 (SwissRoll).

4.2. Multidimensional scaling (MDS). Consider the following prob-
lem: Assume a collection of n objects (e.g., cities) with pairwise distances
{`ij}1≤i,j≤n. Represent them as points in some Euclidean space, y1, . . . ,yn ∈
Rk, such that

`ij = ‖yi − yj‖2 (or as close as possible), ∀ i, j
Remark. Possible distance metrics that can be used by MDS:

• Euclidean distance (`2)
• Manhattan / Cityblock distance (`1)
• Minkowski distance (`p)
• Chebyshev / maximum coordinate difference (`∞)
• Cosine of the angle: ‖ x

‖x‖ −
y
‖y‖‖

2 = 2− 2 cos θ
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• Geodesic distance (along curved dimensions)

We illustrate this problem with some examples.

Example 4.3. Given the distances between 20 cities in the U.S., display
them on a (two-dimensional) map to preserve, as closely as possible, all the
distances.

Example 4.4. Suppose we are given points in a very high dimensional
space x1, . . . ,xn ∈ Rd with some kind of distance `ij = ‖xi − xj‖. We

would like to find low dimensional representations, y1, . . . ,yn ∈ Rk for some
k � d, which can (approximately) preserve the given distances.

If the points are known to lie on a manifold (curve, surface, etc.), then
one can use geodesic distance (shortest distance along the manifold) and try
to preserve them in a low-dimensional Euclidean space. This is called the
manifold learning problem.

To solve the MDS problem, first observe that the solutions are not
unique, as any translation of the new points preserves the pairwise distances.
We thus remove the translational invariance by adding a constraint∑

yi = 0.

After squaring the above equations, we may expand them to get

`2ij = ‖yi‖2 + ‖yj‖2 − 2〈yi,yj〉
Summing over i and j separately to get∑

i

`2ij =
∑
i

‖yi‖2 + n‖yj‖2∑
j

`2ij = n‖yi‖2 +
∑
j

‖yj‖2

Denoting by

`2·j =
∑
i

`2ij

`2i· =
∑
j

`2ij

`2·· =
∑
i

∑
j

`2ij

we continue to sum over i, j separately:

`2·· = n
∑
i

‖yi‖2 + n
∑
j

‖yj‖2 = 2n
∑
t

‖yt‖2

This implies that ∑
t

‖yt‖2 =
1

2n
`2··

Plugging back we then find

‖yj‖2 =
1

n
`2·j −

1

2n2
`2··

‖yi‖2 =
1

n
`2i· −

1

2n2
`2··
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and finally

〈yi,yj〉 =
1

2

(
1

n
`2i· +

1

n
`2·j −

1

n2
`2·· − `2ij

)
︸ ︷︷ ︸

:=gij

, ∀ i, j

Let G = (gij) be an n × n matrix and define Y = [y1, . . . ,yn]T ∈ Rn×d.
Then the last equation may be rewritten as

YYT = G.

Remark. It can be shown that

G = −1

2
JLJ, where L = (`2ij) and J = In −

1

n
11T .

From this we conclude that the matrix G is symmetric with all row and
column sums equal to zero.

The solution of the problem, if it exists, is still not unique, because any
rotation of a solution Y, i.e., YQ for some orthogonal matrix Q, is also a
solution. In practice, we only want to find one solution in order to represent
the original data in a Euclidean space. Suppose

G = UΛUT

is the spectral decomposition. An exact solution of the above equation is

Y = UΛ1/2 = [
√
λ1u1 . . .

√
λrur].

We have thus proved the following result.

Theorem 4.2. The problem

‖yi − yj‖2 = `ij , ∀ i, j and
∑

yi = 0

has the following exact solution

Y = UΛ1/2 = [
√
λ1u1 . . .

√
λrur]

where (λi,ui) are the eigenpairs of the G matrix.

Remark. If the eigenvalues decay quickly, we then truncate the columns to
obtain an approximate solution

Yk ≈ [
√
λ1u1 . . .

√
λkuk]

where k < r is the number of dominant eigenvalues.
Remark. In the special case of the input data being the Euclidean dis-
tances between points x1, . . . ,xn ∈ Rd, the MDS approach is equivalent to

PCA. To see this, first note that Y = X̃ is already a solution to the MDS

problem. Accordingly, G = X̃X̃T . From the SVD of X̃ = UΣVT we obtain
the eigenvalue decomposition of G = UΣ2UT . Therefore, another exact

solution is Y = UΣ, which differs from X̃ by a rotation represented by
the orthogonal matrix V (but this solution allows to find low-dimensional
approximate solutions based on the decay of the singular values). This re-
mark also shows that PCA, in addition to preserving variances, preserves
the pairwise Euclidean distances of the original data.



20 CONTENTS

Example 4.5. Consider a collection of mutual distances (along the earth
surface) among 20 US cities. Use MDS to find a two-dimensional represen-
tation of the cities (i.e., draw a map).

Boston
Buffalo

Chicago

Dallas

Denver

Houston

Los Angeles
Memphis

Miami

Minneapolis

New York

Omaha
Philadelphia

Phoenix

Pittsburgh

Saint Louis

Salt Lake City
San Francisco

Seattle

Washington D.C.

Figure 2. Locations of 20 US cities on a map found by MDS

Example 4.6 (MNIST handwritten digit 1). Apply MDS with `1 dis-
tance to embed the images into 2 dimensions.

In general, to select k and evaluate the quality of approximation, one
can use the following measure.

Definition 4.1. The Kruskal stress is defined as

Stress =

√∑
i,j(`ij − ‖yi − yj‖2)2∑

i,j `
2
ij

.

Empirically, the fit is good if stress < 0.1, and unacceptable if stress >
0.15.

4.3. ISOmap. Briefly, ISOmap is MDS with geodesic distances (it as-
sumes that the data lives on some smooth manifold).

4.3.1. Motivation. Consider Swissroll and MNIST digits 1. There are at
least three drawbacks about PCA:

• The PCA dimension is bigger than the manifold dimension
• PCA may project faraway points inside the manifold together
• PCA does not capture the curved dimensions (its principal direc-

tions are generally not meaningful).

4.3.2. How to find geodesic distances. Two steps:

• Build a neighborhood graph from the given data by connecting only
“nearby points” (by using either ε-ball or kNN approaches)
• Apply Disjkstra’s algorithm with the graph to find all geodesic

distances
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Practice problems set 2

(1) Download all the code and data from my webpage (http://www.
math.sjsu.edu/~gchen/) and make sure you can execute them
successfully and reproduce all results obtained in class.

(2) Select all images of the digit 0 (or another digit you prefer) in the
MNIST dataset to perform PCA. Display the following:
• The center of the handwritten 0’s as an image of size 28× 28

(this is how the “average” writer writes the digit 0)
• The first 50 singular values and their explained variances (two

plots). How large does k need to be if the goal is to preserve
90% of the variance in the data set?
• The top 20 principal directions (i.e., right singular vectors) as

images of size 28× 28
• The top two principal components of the data (in order to

visualize the data)
(3) Perform PCA with all images of digits 0 and 1 in the MNIST data

set and display the top two principal components with the clusters
colored differently. How good is the separation between them in 2
dimensions?

(4) Repeat the previous question with digits 4 and 9. Which pair seems
easier to be separated?

(5) Perform MDS with the city block (`1) distance to the pair of digits
4 and 9 and display the 2 dimensional embedding. Is it different
from what you obtained by PCA?

(6) Perform MDS on a data set called ChineseCityData.mat that con-
tains the mutual distances of 12 Chinese cities to produce a two-
dimensional map (for clarity let’s place the City of Urumqi in the
top left corner). Find also the stress number. How good is your
map (compared with the Google map of China)?

(7) Download the ISOmap code from my website (note that the code
provided on the ISOmap website has an error; it has been fixed in
the version I provide). Perform ISOmap on the images of digit 4
and interpret the low dimensional representation you got.

(8) Use Dijkstra’s algorithm to calculate, by hand, the shortest distance
from the node O to every other node in the following graph:

(9) Verify that the G matrix used in MDS satisfies

G = −1

2
JLJ, where L = (`2ij) and J = In −

1

n
11T .

Use this formula to show that the matrix G is symmetric with all
row and column sums equal to zero.
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5. Introduction to clustering

5.1. Clustering basics.

Problem 5.1. Assume a data set X ∈ Rn×d. We would like to divide
the data set into k disjoint subsets (called clusters) such that within every
cluster points are “similar” (at least to their near neighbors) and between
clusters points are “dissimilar”.

Remark. Clustering is an unsupervised machine learning task, often called
learning without a teacher. In contrast, classification is supervised (learning
with a teacher) because training examples from each class are available.

5.1.1. Different types of clusters:

• Center-based (kmeans)
• Distribution-based (mixture of Gaussians)
• Geometry-based (subspace clustering)
• Contiguity-based (manifold clustering)
• Content-based (document clustering, image segmentation)

5.1.2. Applications of clustering.

• Digits clustering
• Face clustering
• Document grouping
• Image segmentation

5.1.3. Some necessary components of clustering:

• Objects and their attributes (i.e., data matrix)
• Number of clusters
• Similarity or dissimilarity measure, e.g.,

– Euclidean distance (`2)
– Manhattan distance (`1)
– Maximum direction (`∞)
– Cosine of the angle
– Correlation coefficient

• Objective function

5.1.4. Clustering is hard!

• Similarity measure hard to pick
• Number of clusters often unknown and hard to determine (consider

hierarchical clustering)

5.2. kmeans clustering. The kmeans algorithm aims to solve the fol-
lowing clustering problem.

Problem 5.2. Given a set of n points in Rd, X = {x1, . . . ,xn}, and a
positive integer k, find a partition of X into k disjoint clusters C1, . . . , Ck

such that the total scatter is the smallest possible:

min
X=C1∪···∪Ck

k∑
j=1

∑
x∈Cj

‖x− cj‖2, where cj =
1

nj

∑
x∈Cj

x

The original problem is combinatorial in nature (as the naive approach
of checking every possible partition has a complexity of O(nk)). kmeans is
a fast, approximate solution that is based on iterations.
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5.2.1. Intuition. We rewrite the above problem as a more “complicated”
one:

min
{Cj},{aj}

k∑
j=1

∑
x∈Cj

‖x− aj‖2

where each aj represents a landmark point for Cj . Choosing the clusters
and landmark points simultaneously to minimize the total scatter is difficult;
however,

• Given the clusters C1, . . . , Ck, the optimal landmark points are
their centers: aj = cj , ∀j;
• Given the landmark points a1, . . . ,ak, the optimal clusters are

formed by assigning points to nearest landmark points.

We thus adopt an iterative procedure, starting with a random guess of the
landmark points, to solve the above problem.

5.2.2. Algorithm. See Alg. 1.

Algorithm 1 Psuedocode of kmeans clustering (Lloyd’s algorithm)

Input: Data X = {x1, . . . ,xn} ⊂ Rd, number of clusters k
Output: A partition of X into k clusters C1, . . . , Ck

Steps:

1: Initialization: Randomly select k initial centers c
(0)
1 , . . . , c

(0)
k

2: Let t← 1 be the iteration index.
Repeat

• Cluster update: For each 1 ≤ j ≤ k, assign to C
(t)
j the points

that are closest to c
(t−1)
j

• Center update: c
(t)
j = 1

|C(t)
j |

∑
x∈C(t)

j

x, j = 1, . . . , k

• t← t+ 1

until some stopping criterion has been reached, e.g., when t > 100 or
total scatter stops decreasing

3: Return the final clusters C
(t)
j , . . . , C

(t)
j

5.2.3. Experiments. See Matlab demonstration.
5.2.4. Advantages and disadvantages.

• pros: simple and fast (often, but not always), and always converges
• cons: not always the best partition; cannot handle nonconvex data

5.2.5. How to initialize kmeans. A few methods:

• Randomly select points from data set
• Pick faraway points
• Pick high density points
• kmeans++

5.2.6. How to determine k.

• The elbow method
• Xmeans

5.2.7. Other measures of cluster quality. ` − 1 distance and maximum
distance, which lead to k-medians and k-balls clustering.
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6. Spectral clustering

Spectral clustering refers to a family of clustering algorithms that are
based on the spectral decomposition of similarity matrices.

6.1. The perturbation perspective of clustering. Given a data set
x1, . . . ,xn ∈ Rd to be separated into k clusters, the Ng-Jordan-Weiss (NJW)
version of spectral clustering starts by computing a matrix W = (wij) ∈
Rn×n of pairwise similarities:

wij =

e−
‖xi−xj‖

2

2σ2 , i 6= j

0, i = j

where σ > 0 is a fixed parameter whose value will be set by the user. It
then performs a symmetric normalization of W

W̃ = D−
1
2 WD−

1
2 ,

where

D = diag(d1, . . . , dn), di =

n∑
j=1

wij

or equivalently, in compact matrix notation

D = diag(W1).

Afterward, the top k eigenvectors of W̃ ∈ Rn×n are taken to form U =

[u1 . . .uk] ∈ Rn×k, and further Ũ ∈ Rn×k by normalizing the rows of U

to have unit length. Lastly, k-means is applied to the row vectors of Ũ
(which represent the original points in the same order) to cluster them into
k disjoint subsets. We list all the steps in Alg. 2.

Algorithm 2 NJW spectral clustering

Input: Data X = {x1, . . . ,xn} ⊂ Rd, # clusters k, and scale parameter σ
Output: A partition of X = C1 ∪ · · · ∪ Ck

Steps:
1: Construct the similarity matrix W = (wij) by

wij = e−
‖xi−xj‖

2

2σ2 , i 6= j (0 otherwise)

2: Compute D = diag(W1) and use it to normalize W to get W̃ =

D−
1
2 WD−

1
2

3: Find the top k eigenvectors of W̃ to form an eigenvectors matrix U ∈
Rn×k

4: Renormalize the rows of U to have unit length (denote the new matrix

by Ũ)

5: Apply k-means to cluster the row vectors of Ũ into k groups and assign
labels to the original data accordingly.

If we ignore the two normalization steps (i.e., 2 and 4), then NJW spec-
tral clustering essentially consists of calculating two matrices followed by
kmeans clustering:
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• W: This matrix encodes the similarity information in the data:
0 ≤ wij ≤ 1 for all i, j and for any fixed σ, the closer two points
are, the larger their similarity score is. This actually defines an
undirected, weighted graph G = (V,E) with each vertex vi ∈ V
representing a data point xi and each edge eij ∈ E (from xi to xj)
being weighted by wij . As we shall see, such interpretation of W
will lead to a graph cut formulation of spectral clustering.
• U: This matrix provides a k-dimensional embedding of the given

data for easy clustering by kmeans. To see this, we regard the
weight matrix as a feature matrix and note that its left singular
vectors are the same as the eigenvectors (because W is symmetric).

We carry out all the steps of Alg. 2 by hand in an ideal scenario where
the weight matrix W is given by

wij =

{
1, xi, xj in same true cluster;

0, otherwise

In reality, any W calculated from real data can be seen as a perturbed
version of this ideal matrix.

6.1.1. Experiments.

Example 6.1. Computer demonstration.

How to choose σ:

• Average distance from jth nearest neighbor
• Median distance from jth nearest neighbor
• Self-tuning spectral clustering

6.2. Applications.
6.2.1. Image segmentation.
6.2.2. face clustering.
6.2.3. Text documents clustering.
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6.3. The graph cut perspective of clustering. Given a data set
x1, . . . ,xn ∈ Rd to be clustered, we represent it by a similarity graph G =
(V,E). Each vertex vi ∈ V represents a data point xi. Two vertices vi, vj ∈
V are connected by an edge eij if the corresponding data points xi and xj

are “sufficiently similar”.
The problem of clustering can now be reformulated as a graph cut prob-

lem: we want to find a partition of the graph such that

• edges between different groups have very low weights (which means
that points in different clusters are dissimilar from each other) and
• edges within a group have high weights (which means that points

within the same cluster are similar to each other).

Below are the different kinds of similarity graphs:

• The ε neighborhood graph: connect any two points xi,xj whose
distance is less than ε
• The kNN graph (and mutual kNN): connect any two points xi,xj

if one is within the k nearest neighbors of the other (weak kNN) or
both are within the k nearest neighbors of each other (strong/mutual
kNN);
• The fully connected graph: connect any two points xi,xj but assign

a weight to the edge

κ(xi,xj) = e−
‖xi−xj‖

2

2σ2 , ∀i 6= j

where σ > 0 is a scale parameter whose value is fixed.

The first two methods typically yield undirected and unweighted graphs,
while the last one generates undirected, weighted graphs.

Definition 6.1. The set of all pairwise weights in a weighted graph
define a weight matrix

W ∈ Rn×n with wij = κ(xi,xj), ∀i 6= j

Proposition 6.1. Properties of the weight matrix.

• All entries of W are between 0 and 1 (in particular, wii = 0);
• W is symmetric;
• W is nearly block-diagonal (if the data is ordered according to the

clusters).

6.4. Graph terminology. Let G = (V,E,W) be an undirected, weighted
graph with vertices V = {v1, . . . , vn} and weights wij ≥ 0 (there is an edge
eij connecting vi and vj if and only if wij > 0). For example, a graph is
completely determined by the following weight matrix:

W =


0 .8 .8 0 0
.8 .0 .8 0 0
.8 .8 0 .1 0
0 0 .1 0 .9
0 0 0 .9 0


Note that unweighted graphs are also included if 0/1 weights are used.

We introduce some terminology commonly used in graph theory below.
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Two vertices are adjacent if they are connected by an edge (i.e., wij > 0).
An edge is incident on a vertex if the vertex is an endpoint of the edge.
Therefore, the weight matrix is also referred to as the adjacency or incidence
matrix.

The degree of a vertex vi ∈ V is defined as

di = deg(vi) =

n∑
j=1

wij .

It measures the connectivity of a point. The degrees of all vertices yield a
degree matrix

D = diag(d1, . . . , dn) ∈ Rn×n.

Given a subset of vertices A ⊂ V we denote its complement by Ā =
V −A. We define the indicator vector 1A associated to A by

1A = (a1, . . . , an)T , ai = 1 (if vi ∈ A) and ai = 0 (if vi ∈ Ā).

For any two subsets A,B ⊂ V (not necessarily disjoint), we define

W (A,B) =
∑

i∈A,j∈B
wij .

When B = Ā, the total weight W (A,B) = W (A, Ā) is called a cut.
There are two ways to measure the “size” of A ⊂ V :

|A| = #vertices in A;

vol(A) =
∑
i∈A

di = W (A, V ).

The former simply counts the number of vertices in A while the latter mea-
sures how strongly the vertices in A are connected to all vertices of G.

A path in the graph is a sequence of vertices and edges in between such
that no vertex or edge can repeat. Other terms include walk, cycle, etc.

A subset A ⊂ V of a graph is connected if any two vertices in A can be
joined by a path such that all intermediate points also lie in A. A is called
a connected component if it is connected and if there are no connections
between vertices in A and Ā. The nonempty sets A1, . . . , Ak form a partition
of the graph if Ai ∩Aj = ∅, ∀i 6= j and A1 ∪ · · · ∪Ak = V .

6.5. Graph Laplacian. Let G be an undirected, weighted graph with
weight matrix W and degree matrix D.

Definition 6.2. The unnormalized graph Laplacian is defined as

L = D−W.

Remark. Lii = −
∑

j 6=iwij and Lij = −wij for all i 6= j.
The graph Laplacian has many important properties.

Proposition 6.2. Let L ∈ Rn×n represent a graph Laplacian. Then

• L is symmetric.
• All the rows (and columns) sum to 0, i.e., L1 = 0. This implies

that L has a eigenvalue 0 with eigenvector 1.
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• For every vector f ∈ Rd we have

f ′Lf =
1

2

n∑
i,j=1

wij(fi − fj)2.

This implies that L is positive semidefinite and accordingly, its
eigenvalues are all nonnegative: 0 = λ1 ≤ λ2 ≤ · · · ≤ λn.
• The algebraic multiplicity of the eigenvalue 0 equals the number of

connected components in the graph.

Example 6.2. Consider the modified graph

W =


0 .8 .8 0 0
.8 .0 .8 0 0
.8 .8 0 0 0
0 0 0 0 .9
0 0 0 .9 0


It can be shown that

det(λI− L) = λ(λ− 2.4)2 · λ(λ− 1.8).

Thus, the unnormalized graph Laplacian has a repeated eigenvalue 0, with
multiplicity equal to the number of connected components. (The original
connected graph has eigenvalues 0, 0.0788, 1.8465, 2.4000, 2.4747)

We next define two normalized graph Laplacians.

Definition 6.3.

Lrw = D−1L = I−D−1W;

Lsym = D−1/2LD−1/2 = I−D−1/2WD−1/2.

Remark.

• Lsym is symmetric while Lrw is not, but they are similar to each

other: Lrw = D−1/2LsymD1/2.
• Both have the same eigenvalues, but different eigenvectors: v is an

eigenvector of Lrw if and only if D1/2v is an eigenvector of Lsym.
In particular, for the eigenvalue 0, the associated eigenvectors are
1 (for Lrw) and D1/21 (for Lsym).
• The multiplicity of the zero eigenvalue is also equal to the number

of connected components in the graph.
• P = D−1W defines a random walk on the graph; in contrast,

W̃ = D−1/2WD−1/2 has practical advantages because of positive
semidefiniteness.
• Lrw is adopted by Shi and Malik while W̃ is used by Ng, Jordan

and Weiss.

6.6. Shi and Malik’s algorithm. Shi and Malik propose to perform
2-way spectral clustering by seeking an optimal balanced cut:

min
A∪B=V,A∩B=∅

cut(A,B)

(
1

vol(A)
+

1

vol(B)

)
= Ncut(A,B).

Remark. Other measures of the cut include
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• Cheeger constant

CheegerCut(A,B) =
cut(A,B)

min(vol(A), vol(B))

• Min-max cut

MinMaxCut(A,B) = cut(A,B)

(
1

W (A,A)
+

1

W (B,B)

)
• Ratio cut

RatioCut(A,B) = cut(A,B)

(
1

|A|
+

1

|B|

)
We show that the normalized cut can be expressed in terms of the graph

Laplacian.

Theorem 6.3. Given a similarity graph G = {V,W} and a partition
A ∪B = V , we have

Ncut(A,B) =
xTLx

xTDx
,

where

x =

√
vol(B)

vol(A)
1A −

√
vol(A)

vol(B)
1B, xi =


√

vol(B)
vol(A) , i ∈ A

−
√

vol(A)
vol(B) , i ∈ B

Proof. It can shown by direct calculation:

xTLx = vol(V )Ncut(A,B)

xTDx = vol(V ).

�

Remark. The vector x is completely defined by the partition, contains only
two distinct values, and satisfies a hidden constraint:

xTD1 = 0.

To see this, write

xTD1 =
∑
i

xidi =

√
vol(B)

vol(A)

∑
i∈A

di−

√
vol(A)

vol(B)

∑
i∈B

di =
√

vol(A)vol(B)−
√

vol(A)vol(B) = 0.

Remark. The choice of x is not unique. In fact,

x =
1

vol(A)
1A −

1

vol(B)
1B, xi =

{
1

vol(A) , i ∈ A
−1

vol(B) , i ∈ B

would work too and have the same properties. This is left as homework for
you to verify.

We have thus arrived at the following equivalent problem:

min
x∈{a,−b}n:

xTD1=0

xTLx

xTDx
.
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This problem is NP-hard, and in order to solve it efficiently, we relax the
requirement that x take only two distinct values to consider only

min
x∈Rn

xTD1=0

xTLx

xTDx
.

Theorem 6.4. A minimizer of the above Rayleigh quotient problem is
given by the second smallest eigenvector of Lrw:

Lrw x = λ2x.

Proof. Define y = D1/2x. Then the above problem can be rewritten
as

min
y∈Rn

yTD1/21=0

yTLsymy

yTy
.

Since D1/21 is an eigenvector of Lsym corresponding to 0, the minimizer is
given by the second smallest eigenvector of Lsym. In terms of x, this is

LsymD1/2x = λ2D
1/2x

or
Lrwx = λ2x.

�

Remark. The RatioCut criterion leads to the following relaxed problem:

min
x∈Rn:
xT 1=0

xTLx

xTx
.

The solution is obviously given by the second smallest eigenvector of the
unnormalized graph Laplacian L:

Lx = λ2x.

The resulting algorithm is equivalent to that of Ncut when the clusters have
comparable sizes and is worse otherwise (you will see this in a homework
problem).

Algorithm 3 Normalized Cut for 2-way clustering (by Shi and Malik)

Input: Data X = {x1, . . . ,xn} ⊂ Rd, number of clusters k, and scale pa-
rameter σ

Output: A partition of X = C1 ∪ C2

Steps:
1: Construct a weighted graph by assigning weights

wij = e−
‖xi−xj‖

2

2σ2

2: Find the second smallest eigenvector v of the normalized graph Lapla-
cian Lrw

3: Assign labels based on the sign of the coordinates of v
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(1) Let

A =


a b · · · b
b a · · · b
...
b b · · · a

 ∈ Rm×m

Show that A has eigenvalues a+ (m− 1)b and a− b with algebraic
multiplicities of 1 and m−1 respectively. Moreover, an eigenvector
associated to the eigenvalue a+ (m− 1)b is 1/

√
m.

(2) First apply the kmeans algorithm to cluster the MNIST digits 0
and 1 directly. Now perform PCA on the two groups to reduce
the dimensionality to k ∈ {50, 100, 150} and run kmeans again to
separate the two groups of digits. What are your accuracy rates?

(3) We know that kmeans clustering tries to minimize the total scatter.
Let Y = {y1, . . . ,ym} represent any cluster with mean ȳ. Then

m∑
i=1

‖yi − ȳ‖2 =
1

m

∑
1≤i<j≤m

‖yi − yj‖2

This implies that kmeans also minimizes the total sum of squared
pairwise distances.

(4) Implement on your own the NJW version of spectral clustering and
evaluate it on the two-Gaussians data generated by the following
piece of code:
n = 100;
X = [randn(n,2)*0.5 + 1; randn(n,2)*0.5 - 1];
labels = reshape(repmat(1:2, n, 1), 1, []);
What is the value of the scale parameter σ you used?

(5) Consider NJW spectral clustering with similarity matrix W and
degree matrix D = diag(W1). Define L = D −W, the graph
Laplacian matrix. Show that
• L is symmetric.
• All the rows (and columns) of L sum to 0, i.e., L1 = 0. This

implies that L has a eigenvalue 0 with eigenvector 1.
• For every vector f ∈ Rd we have

f ′Lf =
1

2

n∑
i,j=1

wij(fi − fj)2.

This implies that L is positive semidefinite and accordingly,
its eigenvalues are all nonnegative: 0 = λ1 ≤ λ2 ≤ · · · ≤ λn.


