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Multidimensional Scaling (MDS)

The MDS problem
Assume a collection of n objects, O = {o1, . . . , on}, which can be points,
images, documents, people, etc. Suppose also that we are given the
pairwise dissimilarities of the objects in the set O,

D = (dij) ∈ Rn×n, where dij = dissimilarity(oi, oj), 1 ≤ i, j ≤ n

which specify in some way how different the objects are from each other.

Note that these dissimilarities are not necessarily computed based on a
valid distance metric and may violate some of the conditions required by a
distance metric (e.g., the triangle inequality).
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Multidimensional Scaling (MDS)

Remark. When the objects are vectors, the pairwise dissimilarities can be
computed based on one of the following distance metrics:

• Euclidean distance (`2)

• Manhattan/Cityblock distance (`1)

• Chebyshev/maximum coordinate difference (`∞)

• Cosine of the angle: ‖ x
‖x‖ −

y
‖y‖‖

2 = 2− 2 cos θ

• Correlation coefficient: 1− corr(x,y)
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Multidimensional Scaling (MDS)

Given the matrix of pairwise dissimilarities D = (dij) ∈ Rn×n, the goal of
MDS is to represent the objects as vectors in some Euclidean space, say
y1, . . . ,yn ∈ Rk, such that

‖yi − yj‖2 = dij (or as closely as possible), ∀ i, j

so as to visualize their proximity relationships and the global appearance.
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Multidimensional Scaling (MDS)

We illustrate the MDS problem with some examples.

Example 0.1. Given the distances between 20 cities in the U.S., display
them on a (two-dimensional) map to preserve, as closely as possible, all
the distances.
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Multidimensional Scaling (MDS)

Example 0.2 (MDS as a dimension reduction method). Suppose we
are given points in a very high dimensional space x1, . . . ,xn ∈ R` (e.g.,
images, documents) with some kind of distance dij = ‖xi − xj‖. We
would like to find low dimensional representations, y1, . . . ,yn ∈ Rk for
some k < `, which can (approximately) preserve the given distances.
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Multidimensional Scaling (MDS)

Example 0.3 (ISOmap). If the high dimensional data points are known
to lie on a manifold (curve, surface, etc.), then one can try to preserve
the geodesic distance (shortest distance along the manifold) in a low-
dimensional Euclidean space.
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Multidimensional Scaling (MDS)

Mathematical setup and derivation
To solve the MDS problem, first observe that the solutions are not unique,
as any translation of the new points have the pairwise distances:

‖(yi + c)− (yj + c)‖2 = ‖yi − yj‖2 = dij , for all i, j

We can remove the translational invariance by adding a constraint
n∑
i=1

yi = 0.

and solve it together with the MDS equations

‖yi − yj‖2 = dij for all i, j
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Multidimensional Scaling (MDS)

First, we square the above equations and expand them to get

d2
ij = ‖yi‖2 + ‖yj‖2 − 2yTi yj

Summing over i and j separately gives that∑
i

d2
ij =

∑
i

‖yi‖2 +
∑
i

‖yj‖2 − 2
∑
i

yTi yj

=
∑
i

‖yi‖2 + n‖yj‖2∑
j

d2
ij =

∑
j

‖yi‖2 +
∑
j

‖yj‖2 − 2
∑
j

yTi yj

= n‖yi‖2 +
∑
j

‖yj‖2
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Multidimensional Scaling (MDS)

Let D2 = (d2
ij), and denote its column, row and overall sums by

d2
·j =

∑
i

d2
ij

d2
i· =

∑
j

d2
ij

d2
·· =

∑
i

∑
j

d2
ij

We can rewrite the equations as

d2
·j =

∑
i

‖yi‖2 + n‖yj‖2

d2
i· = n‖yi‖2 +

∑
j

‖yj‖2
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Multidimensional Scaling (MDS)

We continue to sum them up (over j, i respectively) to obtain that

d2
·· = n

∑
i

‖yi‖2 + n
∑
j

‖yj‖2 = 2n
∑
t

‖yt‖2

This implies that ∑
t

‖yt‖2 = 1
2nd

2
··

Plugging it back, we then find

‖yj‖2 = 1
n
d2
·j −

1
2n2d

2
··

‖yi‖2 = 1
n
d2
i· −

1
2n2d

2
··
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Multidimensional Scaling (MDS)

and finally

yTi yj = 1
2

( 1
n
d2
i· +

1
n
d2
·j −

1
n2d

2
·· − d2

ij

)
︸ ︷︷ ︸

:=gij

, ∀ i, j

Let

• G = (gij) ∈ Rn×n (with gij defined above): gram matrix

• Y = [y1, . . . ,yn]T ∈ Rn×k: embedding matrix

Then the last equation may be rewritten as

YYT = G.
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Multidimensional Scaling (MDS)

Properties of the G matrix:

• We have the following matrix representation for G:

G = −1
2CD2C, where C = In −

1
n

Jn.

Verify:

CD2C =
(

In −
1
n

11T
)

D2

(
In −

1
n

11T
)

= D2︸︷︷︸
d2

ij

− 1
n

1 1TD2︸ ︷︷ ︸
(d2

·j)

− 1
n

D21︸ ︷︷ ︸
(d2

i·)

1T + 1
n2 1 1TD21︸ ︷︷ ︸

d2
··

1T = −2G.
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Multidimensional Scaling (MDS)

Remark. The above representation is mathematically convenient for
studying the properties of G, but should be avoided for computing
G when n is large.

The reason is that it involves matrix multiplications between n× n
matrices and has an overall complexity of O(n3).

The original formula is computationally more efficient, as it involves
only row and columns operations on G and has a complexity of
O(n2):

gij = 1
2

( 1
n
d2
i· +

1
n
d2
·j −

1
n2d

2
·· − d2

ij

)
, ∀ i, j
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Multidimensional Scaling (MDS)

• If D2 is symmetric, then G is also symmetric.

• All the rows (and columns) of C sum to zero (because C is a
centering matrix):

C1 =
(

In −
1
n

11T
)

1 = In1−
1
n

1 1T1︸︷︷︸
n

= 1− 1 = 0.

As a result, all the rows (and columns) of G sum to zero as well:

G1 = −1
2CD2 C1︸︷︷︸

0

= 0

This also indicates that G must have an eigenvalue of 0.

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 18/40



Multidimensional Scaling (MDS)

Remark. The solution of the MDS problem (YYT = G) if it exists, is
still not unique. The reason is that any rotation of Y, i.e., YQ for some
orthogonal matrix Q, is also a solution:

(YQ)(YQ)T = YQQTYT = YYT = G.

In practice, we only need to find one solution to represent the given data
in a Euclidean space.

Remark. In order for a solution to exist, G must be positive semidefinite.
In this case, we can write

G = UΛUT = UΛ1/2Λ1/2UT =
(
UΛ1/2

) (
UΛ1/2

)T
from which we can obtain the following result.
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Multidimensional Scaling (MDS)

Result
Theorem 0.1. If the matrix G = −1

2CD2C is positive semidefinite and
k ≥ r = rank(G), then the MDS problem has the following exact solution

Y = UkΛ
1/2
k = [

√
λ1u1, . . . ,

√
λrur,

√
λr+1ur+1︸ ︷︷ ︸

=0

, . . . ,
√
λkuk︸ ︷︷ ︸
=0

] ∈ Rn×k

where (λi,ui) are the eigenpairs of the G matrix.

Remark. The “smallest” exact solution is when k = r:

Yr = UrΛ1/2
r =

[√
λ1u1 · · ·

√
λrur

]
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Multidimensional Scaling (MDS)

Connection to PCA
In the special setting in which the objects are Euclidean vectors, x1, . . . ,xn ∈
R`, and the input dissimilarities are Euclidean distances, dij = ‖xi− xj‖2,
MDS as a dimension reduction approach is identical to PCA.

To see this, first note that in this case we can repeat the steps of the
mathematical derivation with the centered data X̃ = CX,

‖x̃i − x̃j‖2 = dij , ∀i, j, and
n∑
i=1

x̃i = 0

to obtain that
X̃X̃T = G.
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Multidimensional Scaling (MDS)

Thus, the matrix equation for the desired embedding matrix Y ∈ Rn×k

becomes
YYT = X̃X̃T .

To solve for Y, consider the compact SVD of X̃:

X̃ = UrΣrVT
r , r = rank(X̃)

Plug it into the preceding equation to get

YYT = UrΣrVT
r VrΣrUT

r = UrΣ2
rUT

r .
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Multidimensional Scaling (MDS)

Clearly,

• if k = r, an exact solution is Yr = UrΣr;

• otherwise, if k < r, the equation has no exact solution, but the
“best” approximation (such that YYT is the closest to G under
the Frobenius norm) would be Yk = UkΣk, the matrix of first k
principal components of the original data.

This also shows that PCA tries to preserve, as much as possible, the
pairwise Euclidean distances of vector data.
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Multidimensional Scaling (MDS)

Numerical issues and approximate solutions

In this section we address some numerical issues that may arise in MDS
and meanwhile study cases where approximate solutions are preferred
(even when the exact solution exists):

• The eigenvalues of G have a rapid decay

• G is not symmetric or positive semidefinite
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Multidimensional Scaling (MDS)

Case 1: The eigenvalues of the matrix G have a fast decay, i.e.,

λ1 ≥ · · · ≥ λr0 � λr0+1 ≥ · · · ≥ λr > 0

where r = rank(G) and r0 < r is a positive integer representing the
number of dominant eigenvalues of G.

In such a case, we can truncate the columns of

Yr =
[√

λ1u1 · · ·
√
λr0ur0

√
λr0+1ur0+1 · · ·

√
λrur

]
= UrΛ1/2

r ∈ Rn×r

to obtain an approximate solution to the MDS equation

Yr0 =
[√
λ1u1 · · ·

√
λr0ur0

]
= Ur0Λ1/2

r0 ∈ Rn×r0

and use it as a configuration of the original objects.
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Multidimensional Scaling (MDS)

There are two different ways to measure the quality of the approximation
of Yr by Yr0 .

First, we can directly examine the ratio of their squared magnitudes, i.e.,

‖Yr0‖2F
‖Yr‖2F

=
trace

(
Yr0YT

r0

)
trace (YrYT

r ) =
trace

(
Ur0Λr0UT

r0

)
trace (UrΛrUT

r ) = λ1 + · · ·+ λr0

λ1 + · · ·+ λr
.

The approximation is consider to be good if this fraction is close to 1.

In the special setting of Euclidean vector data and Euclidean distances
(where MDS is identical to PCA), this criterion coincides with the relative
amount of scatter preserved by PCA, because the eigenvalues of G = X̃X̃T

are the squared singular values of the centered data matrix X̃, i.e., λi = σ2
i

for all 1 ≤ i ≤ r.
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Multidimensional Scaling (MDS)

The second measure is the Kruskal stress,

Stress = ‖D− D̂‖F
‖D‖F

.

which examines the relative approximation error of D by the Euclidean
distances of the solution Y,

D̂ = (d̂ij) ∈ Rn×n, d̂ij = ‖yi − yj‖

This is more general measure of the goodness of the approximate solution
Yr0 , and can be used in other settings. Empirically,

• the fit is good if stress < 0.1, and

• unacceptable if stress > 0.15.
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Multidimensional Scaling (MDS)

Case 2: The positive semidefiniteness or even the symmetry of G does
not hold true, so an exact solution does not exist.

First, D may lose the exact symmetry because the dissimilarity measure
used is not symmetric, or there is noise in the entries of G. In those cases,
we can apply the following symmetry correction:

D←− 1
2
(
D + DT

)
.

Second, the matrix G may be symmetric but not positive semidefinite. In
fact, G ∈ Sn+(R) if and only if D corresponds to Euclidean geometry, i.e.,
Euclidean distances on Euclidean vectors.
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Multidimensional Scaling (MDS)

We give an example of non-Euclidean geometry here. Consider a collection
of four points on the unit circle in R2

x1 = (1, 0)T , x2 = (0, 1)T , x3 = (−1, 0)T , x4 = (0,−1)T

and for any pair of points, their distance is defined as the length of the
shortest path between them along the circle.

The pairwise dissimilarity matrix is

D =


0 π

2 π π
2

π
2 0 π

2 π

π π
2 0 π

2
π
2 π π

2 0

 .
b

b

b

b

1−1

1

−1
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Multidimensional Scaling (MDS)

It follows that

G = −1
2C D2 C = π2

16


3 1 −5 1
1 3 1 −5
−5 1 3 1
1 −5 1 3


This matrix is symmetric but not positive semidefinite because G has a
negative eigenvalue:

λ1 = λ2 = π2

2 , λ3 = 0, λ4 = −π
2

4 .

What can we do when G is symmetric but not positive semidefinte because
D corresponds to non-Euclidean geometry?
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Multidimensional Scaling (MDS)

A simple approach would be to ignore the negative eigenvalue(s) of G and
focus on the corresponding eigenvectors of the positive eigenvalues.

That is, letting λi, 1 ≤ i ≤ r+ be the only positive eigenvalues of G with
corresponding unit-vector eigenvectors vi, 1 ≤ i ≤ r+, we use

Yr+ =
[√
λ1v1 · · ·

√
λr+vr+

]
as a low-dimensional embedding of the data.

Such an approximate solution satisfies

Yr+ (Yr+)T = λ1v1vT1 + · · ·+ λr+vr+ (vr+)T .

which is the positive component of the symmetric matrix G and also the
closest positive semidefinite matrix to G under the Frobenius norm.
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Multidimensional Scaling (MDS)

In the above example, we would just focus on λ1 = λ2 = π2

2 and corre-
sponding eigenvectors

v1 = 1√
2

(1, 0,−1, 0)T , v2 = 1√
2

(0, 1, 0,−1, )T

and use them to form an embedding
matrix

Y2 =
[√
λ1v1

√
λ2v2

]

=


π
2 0
0 π

2
−π

2 0
0 −π

2

 .
b

b

b

b

b

b

b

b

π
2

π
2

−π
2

−π
2

1−1

1

−1
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The embedded points have the following Euclidean distances:

D̂ =


0 π√

2 π π√
2

π√
2 0 π√

2 π

π π√
2 0 π√

2
π√
2 π π√

2 0


To evaluate the quality of the MDS configuration, we compute the Kruskal
stress

stress = ‖D− D̂‖F
‖D‖F

=
√

2− 1√
3

= .2391

This indicates that the MDS embedding cannot adequately capture the
nonlinear geometry.
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The (classical) MDS algorithm
Input: Matrix of squared pairwise distances D2 ∈ Rn×n and integer k ≥ 1

Output: A k-dimensional vector representation of the objects: Y ∈ Rn×k.

Steps:

1. Compute the matrix G = −1
2CD2C (see footnote1)

2. Find the top-k eigenvectors of G: G ≈ UkΛkUT
k

3. Form the embedding matrix Y = UkΛ
1/2
k .

1Do not use this formula to compute G; this is only for mathematical convenience.
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MATLAB implementation of MDS

cmdscale Classical Multidimensional Scaling.

Y = cmdscale(D);
% D is an n× n distance matrix (not squared!);
% Y is the final configuration matrix of size n× r

[Y, e] = cmdscale(D, p);
% p specifies the dimensionality of the desired embedding Y
% e contains the largest p eigenvalues of the Gram matrix (G) that
correspond to Y
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Example 0.4 (Mapping of the 20 US cities).
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The stress of the 2-D representation of the 20 US cities data is 0.0029.
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Multidimensional Scaling (MDS)

Example 0.5 (MNIST handwritten digit 1). Apply MDS with `1 metric
to embed the images of 1 into 2 dimensions.

MATLAB script:

% digits1 is a 7877-by-784 matrix containing all the 1’s

Y = cmdscale(pdist(digits1, ’cityblock’), 2);

(picture on next slide)
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Further reading

A book chapter on MDS2

• Classical MDS (covered in this lecture): preserve the input distances

• Ordinal MDS (not covered): preserve only the rank order

2http://www.bristol.ac.uk/media-library/sites/cmm/migrated/documents/
chapter3.pdf
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