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Singular Value Decomposition (SVD)

Outline of the lecture:
e Existence of SVD for general matrices

Different versions of SVD

Computing SVD by hand and software

Geometric interpretation

Applications of SVD
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Singular Value Decomposition (SVD)

Recall
... that symmetric matrices are (orthogonally) diagonalizable.

That is, for any symmetric matrix A € R"*", there exist an orthogonal
matrix Q = [q1 . ..qy) and a diagonal matrix A = diag(A1,...,\,), both
real and square, such that A = QAQT = X", \iqiq} .

Furthermore, \;'s are the eigenvalues of A and q;'s the corresponding
eigenvectors (which are orthogonal to each other and have unit norm).

Such a factorization is called the eigendecomposition of A, also called
the spectral decomposition of A.
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Singular Value Decomposition (SVD)

Existence of the SVD for general matrices

Theorem: For any matrix A € R™*", there exist two orthogonal matrices
U e R™™ V € R™™™ and a nonnegative, diagonal matrix X € R"™*"

such that
A =UxVT,

Moreover, the number of positive diagonals of 32 equals the rank of A.
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Singular Value Decomposition (SVD)

Remark. This factorization is called the Singular Value Decomposition
(SVD) of A:

e The diagonals of X are called the singular values of A.

e The columns of U are called the left singular vectors of A.

e The columns of V are called the right singular vectors of A.
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Singular Value Decomposition (SVD)

A U b VT
" "
(m>mn) _ ..o
" A
(m=n) | = .'.
" A
(m<n) | = .'.
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Singular Value Decomposition (SVD)

Example 0.1. It can be directly verified that

2 1
1 -1 % 0 &5 V3 1 1\7
o 1|=|-< L+ L. 11- V2 V2
V6 V2 V3 11 )
1 0 41 1 V2 V2
N , V6 V2 v3/ , o
A U P

In the above equation, U,V are orthogonal matrices and 3 is a diagonal
matrix. Therefore, the above factorization represents a singular value
decomposition of A.

Moreover, rank(A) = 2, and there are precisely 2 positive entries in the
diagonal of X.
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Singular Value Decomposition (SVD)

e Singular values:

e Left singular vectors:

2 0 1
u = —175 , U2 = ?5 ; uz = 7§i
V6 V2 V3

e Right singular vectors:

vy = ) Vo =

s
Shsk
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Singular Value Decomposition (SVD)

Connection to symmetric matrices
From the SVD of A we obtain that
AAT=UnVT.VvETUT = U (2xT) UT
ATA=VITUT . USVT = V (27%) VT
This shows that
e U is the eigenvectors matrix of AAT;
e V is the eigenvectors matrix of ATA;

e The nonzero eigenvalues of AAT, AT A (which must be the same)
are equal to the squared singular values of A.
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Singular Value Decomposition (SVD)

Example 0.2. For the matrix A in the preceding example, we have

2 1 2 1 \T
oYl B iV
AAT — | -1 1 1 1 11 1
ye ¢ v Yo ¢ v
VR V' \% v
U =T urT
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Singular Value Decomposition (SVD)

How to prove the SVD theorem

Given any matrix A € R"™*™ the SVD can be thought of as solving a
matrix equation for three unknown matrices (under constraints):

A= U - x» . VI
~— ~— ~—
orthogonal diagonal orthogonal

Suppose such solutions exist. From
ATA =V (2T VT

we can find V and X, which contain the eigenvectors and square roots of
eigenvalues of AT A, respectively.
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Singular Value Decomposition (SVD)

After we have found both V and X, rewrite the matrix equation as
Amxnvnxn = Umxmzmxna

or in columns,

o1

AV Ve Vg1 V] = [Up U g L Uy o

By comparing columns, we obtain

A o, 1 <i<r (#nonzero singular values)
V; =

0, r<i1<n
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Singular Value Decomposition (SVD)

This tells us how to find the first 7 columns of matrix U € R™*™:

1
u,=—Av, foralll<i<r.

g;

The remaining columns of U will be found by completing an orthonormal
basis for R™, starting with {uy,...,u,}:

T .
ux=0, ¢=1,...,r

x|l =1

For a rigorous proof of the SVD theorem, see notes.
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Singular Value Decomposition (SVD)

1 -1
Example 0.3. Find the SVDof A= |0 1
1 0
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Singular Value Decomposition (SVD)

Different versions of SVD

e Full SVD: A, = Uniscn Simsxn VL

nxn

e Compact SVD: Suppose rank(A) = r. Define

U, = [uy,...,u,] € R™*"
V,=[vi,...,v,] € R™"
3, = diag(o1,...,0,) € R

Then
A=U,3%, VL
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Singular Value Decomposition (SVD)

A U, 3, \a

............... - I o

(m>n) . ‘e
....... . I o

(m =n) = .'. :
....... . el

(m<n) | = .°. :

' '
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Singular Value Decomposition (SVD)

e Rank-1 decomposition:
g1 V{

T
A=uy,...,u : :Zaiuiv;r
o | |vE -

This has the interpretation that A is a weighted sum of rank-one
matrices, as for a square, symmetric matrix.

Note that —u;, —v; are also corresponding singular vectors to o;:

A= Za,ul ZO’Z —u;)( —vl)T.

This shows that the SVD of a matrix is not unique.
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Singular Value Decomposition (SVD)

e Truncated SVD: For any integer 1 < K < r, let 01,...,0x
represent the largest K singular values of A with corresponding
left and right singular vectors (u;,v;),1 < i < K. We define the
K-term truncated SVD of A as

K
N T
A~ E o V;
i=1

NI
Ak

Note that A i has a rank of K and it can be regarded as a low-rank
approximation to A (if K is small).

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 18/30



Singular Value Decomposition (SVD)

Geometric interpretation of SVD
Given any matrix A € R™*™ with rank r, let its compact SVD be
A=U,X%, VL

We rewrite it in the following way:

T

A%

Ay * % ;
. T V2
A= (UY,) VI = _
—_— :

A coefficients basis * %k * T
G
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Singular Value Decomposition (SVD)

This shows that the rows of VI (columns of V,.) provide an orthonormal
basis for the row space of A.

A e R™
A
1 Ay
Ay Vi
AJ
0 V2
A Row(A) A
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Singular Value Decomposition (SVD)

Similarly, the columns of U, provide an orthonormal basis for the column

space of A:
P . T pr— ... . T
A= E/ (zrvr) [ul ur] (ETVT) .
basis coefficients
A E Ran
a2
u;
ap
Col(A) An

a; az a,
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Singular Value Decomposition (SVD)

Example 0.4. Let
1 1 2
A=11 01
0 1 1

By direct calculation, we obtain the compact SVD of A as follows:

2
- ; 5 % &
I 1 _ T _
V=1 v | 22_( 1)’ Vs = AG _i 06
1 1 V2 V2
V6 V2

Therefore, {v!,vZ} forms an orthonormal basis for the row space of A,
and the spanning coefficients for the row vectors of A are along the rows

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 22/30



Singular Value Decomposition (SVD)

of the following matrix

V6 0
USh=|% 05
3 1
V6 V2

Similarly, {u, uz} forms an orthonormal basis for Col(A)) and the spanning
coefficients for the columns of A are along the columns of

1 1 2 3 3
sz:(i” )(76 7 76):<76 0 VE)
1 1 0 - 0
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Singular Value Decomposition (SVD)

MATLAB commands for computing matrix SVD

1. Full SVD

svd — Singular Value Decomposition.

[U,S,V] = svd(X) produces a diagonal matrix S, of the same dimension
as X and with nonnegative diagonal elements in decreasing order, and
orthogonal matrices U and V so that X = U*S*V7'.

s = svd(X) returns a vector containing the singular values.
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Singular Value Decomposition (SVD)

2. Truncated SVD

svds — Find a few singular values and vectors.
S = svds(A,K) computes the K largest singular values of A.

[U,S,V] = svds(A,K) computes the singular vectors as well. If A is M-by-
N and K singular values are computed, then U is M-by-K with orthonormal
columns, S is K-by-K diagonal, and V is N-by-K with orthonormal columns.

In many applications, a truncated SVD is enough, and it is much easier to
compute than the full SVD.
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Singular Value Decomposition (SVD)

3. SVD Sketch

[U,S,V] = svdsketch(A) returns the singular value decomposition (SVD)
of a low-rank matrix sketch of A. The matrix sketch only reflects the
most important features of A (up to a tolerance), which enables faster
calculation of the SVD of large matrices compared to using SVDS.

[U,S,V] = svdsketch(A, tol) specifies a tolerance for the sketch of A such
that norm(U*S*V'-A,'fro") /norm(A,'fro’) <= tol.
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Singular Value Decomposition (SVD)

Power method for numerical computing of SVD

Let A € R™*™ be a matrix whose SVD is to be computed: A = UXVT,
Consider C = ATA € R™™. We have

C=V( sz vl = Za.?vivT
C*=V(ETD)VT =3 olviv

CF=V(ETD)VT =3 o?Fvv]
If 01 > o9, then the first term dominates, so

CF = o¥vivl, ask — oo
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Singular Value Decomposition (SVD)

Note that Vlv{ is a rank-1 matrix, with columns being multiples of v.

This means that a close estimate of v; can be computed by simply taking
the first column of CF (for some large k) and normalizing it to a unit

vector.

This method works but can be very costly due to the matrix power part,

which has a complexity of O(n?).
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Singular Value Decomposition (SVD)

A better approach. Instead of computing C*, we select a random
vector x € R™ and compute C*x through a sequence of matrix-vector
multiplications (which are very efficient especially when one dimension of
A is small, or A is sparse):

Chx = ATA ... ATAx

Write x = Y ¢;v; (since vq,...,v, form an orthonormal basis for R™).
Then

Chx ~ (6%kv v]) (Z civi) = oFeyvy.

Normalizing the vector C*x for some large k then yields v, the first right
singular vector of A.
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Singular Value Decomposition (SVD)

Applications of SVD

The matrix SVD has lots of applications such as
e Orthogonal best-fit plane
e Dimension reduction
e Image compression!

e Recommender systems (matrix completion)?

We will cover the first two applications later in the course.

'https://www.mathworks.com/help/matlab/math/image-compression-with-1low-rank-svd.
html

2https://engineering.purdue.edu/ChanGroup/ECE695Notes/Lecture_SVT.pdf
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