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Singular Value Decomposition (SVD)

Outline of the lecture:

• Existence of SVD for general matrices

• Different versions of SVD

• Computing SVD by hand and software

• Geometric interpretation

• Applications of SVD
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Singular Value Decomposition (SVD)

Recall
... that symmetric matrices are (orthogonally) diagonalizable.

That is, for any symmetric matrix A ∈ Rn×n, there exist an orthogonal
matrix Q = [q1 . . .qn] and a diagonal matrix Λ = diag(λ1, . . . , λn), both
real and square, such that A = QΛQT =

∑n
i=1 λiqiqT

i .

Furthermore, λi’s are the eigenvalues of A and qi’s the corresponding
eigenvectors (which are orthogonal to each other and have unit norm).

Such a factorization is called the eigendecomposition of A, also called
the spectral decomposition of A.
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Singular Value Decomposition (SVD)

Existence of the SVD for general matrices

Theorem: For any matrix A ∈ Rm×n, there exist two orthogonal matrices
U ∈ Rm×m,V ∈ Rn×n and a nonnegative, diagonal matrix Σ ∈ Rm×n

such that
A = UΣVT .

Moreover, the number of positive diagonals of Σ equals the rank of A.
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Singular Value Decomposition (SVD)

Remark. This factorization is called the Singular Value Decomposition
(SVD) of A:

• The diagonals of Σ are called the singular values of A.

• The columns of U are called the left singular vectors of A.

• The columns of V are called the right singular vectors of A.
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Singular Value Decomposition (SVD)
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Singular Value Decomposition (SVD)

Example 0.1. It can be directly verified that
1 −1
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
︸ ︷︷ ︸
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·


√

3
1


︸ ︷︷ ︸

Σ

·

 1√
2

1√
2

− 1√
2

1√
2

T

︸ ︷︷ ︸
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.

In the above equation, U,V are orthogonal matrices and Σ is a diagonal
matrix. Therefore, the above factorization represents a singular value
decomposition of A.

Moreover, rank(A) = 2, and there are precisely 2 positive entries in the
diagonal of Σ.
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Singular Value Decomposition (SVD)

• Singular values:
σ1 =

√
3, σ2 = 1;

• Left singular vectors:

u1 =


2√
6

− 1√
6

1√
6

 , u2 =


0
1√
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1√
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− 1√
3


• Right singular vectors:

v1 =

 1√
2

− 1√
2

 , v2 =

 1√
2

1√
2


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Singular Value Decomposition (SVD)

Connection to symmetric matrices
From the SVD of A we obtain that

AAT = UΣVT ·VΣT UT = U
(
ΣΣT

)
UT

AT A= VΣT UT ·UΣVT = V
(
ΣT Σ

)
VT

This shows that

• U is the eigenvectors matrix of AAT ;

• V is the eigenvectors matrix of AT A;

• The nonzero eigenvalues of AAT ,AT A (which must be the same)
are equal to the squared singular values of A.
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Singular Value Decomposition (SVD)

Example 0.2. For the matrix A in the preceding example, we have

AAT =
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Singular Value Decomposition (SVD)

How to prove the SVD theorem
Given any matrix A ∈ Rm×n, the SVD can be thought of as solving a
matrix equation for three unknown matrices (under constraints):

A = U︸︷︷︸
orthogonal

· Σ︸︷︷︸
diagonal

· VT︸︷︷︸
orthogonal

.

Suppose such solutions exist. From

AT A = V
(
ΣT Σ

)
VT

we can find V and Σ, which contain the eigenvectors and square roots of
eigenvalues of AT A, respectively.
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Singular Value Decomposition (SVD)

After we have found both V and Σ, rewrite the matrix equation as

Am×nVn×n = Um×mΣm×n,

or in columns,

A[v1 . . .vr vr+1 . . .vn] = [u1 . . .ur ur+1 . . .um]


σ1

. . .
σr

.

By comparing columns, we obtain

Avi =

σiui, 1 ≤ i ≤ r (#nonzero singular values)
0, r < i ≤ n
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Singular Value Decomposition (SVD)

This tells us how to find the first r columns of matrix U ∈ Rm×m:

ui = 1
σi

Avi for all 1 ≤ i ≤ r.

The remaining columns of U will be found by completing an orthonormal
basis for Rm, starting with {u1, . . . ,ur}:

uT
i x = 0, i = 1, . . . , r
‖x‖ = 1

For a rigorous proof of the SVD theorem, see notes.
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Singular Value Decomposition (SVD)

Example 0.3. Find the SVD of A =

1 −1
0 1
1 0

.
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Singular Value Decomposition (SVD)

Different versions of SVD

• Full SVD: Am×n = Um×mΣm×nVT
n×n

• Compact SVD: Suppose rank(A) = r. Define

Ur = [u1, . . . ,ur] ∈ Rm×r

Vr = [v1, . . . ,vr] ∈ Rn×r

Σr = diag(σ1, . . . , σr) ∈ Rr×r

Then
A = UrΣrVT

r .
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Singular Value Decomposition (SVD)
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Singular Value Decomposition (SVD)

• Rank-1 decomposition:

A = [u1, . . . ,ur]


σ1

. . .
σr



vT

1
...

vT
r

 =
r∑

i=1
σiuivT

i .

This has the interpretation that A is a weighted sum of rank-one
matrices, as for a square, symmetric matrix.

Note that −ui,−vi are also corresponding singular vectors to σi:

A =
r∑

i=1
σiuivT

i =
r∑

i=1
σi(−ui)(−vi)T .

This shows that the SVD of a matrix is not unique.
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Singular Value Decomposition (SVD)

• Truncated SVD: For any integer 1 ≤ K ≤ r, let σ1, . . . , σK

represent the largest K singular values of A with corresponding
left and right singular vectors (ui,vi), 1 ≤ i ≤ K. We define the
K-term truncated SVD of A as

A ≈
K∑

i=1
σiuivT

i︸ ︷︷ ︸
AK

Note that AK has a rank of K and it can be regarded as a low-rank
approximation to A (if K is small).
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Singular Value Decomposition (SVD)

Geometric interpretation of SVD

Given any matrix A ∈ Rm×n with rank r, let its compact SVD be

A = UrΣrVT
r .

We rewrite it in the following way:


A1
...
Am

 = A = (UrΣr)︸ ︷︷ ︸
coefficients

·VT
r︸︷︷︸

basis

=


∗ ∗ · · · ∗
...

... . . . ...
∗ ∗ · · · ∗



vT

1
vT

2
...

vT
r

 .

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 19/30



Singular Value Decomposition (SVD)

This shows that the rows of VT
r (columns of Vr) provide an orthonormal

basis for the row space of A.

Row(A)

b
0

A1

A2

Am

A ∈ Rm×n

A1

A2

Am

v1

v2
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Singular Value Decomposition (SVD)

Similarly, the columns of Ur provide an orthonormal basis for the column
space of A:

A = Ur︸︷︷︸
basis

·
(
ΣrVT

r

)
︸ ︷︷ ︸
coefficients

=
[
u1 · · · ur

]
·
(
ΣrVT

r

)
.

Col(A)

b
0

a1

a2

an

A ∈ Rm×n

a1 a2 an

u1

u2
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Singular Value Decomposition (SVD)

Example 0.4. Let

A =

1 1 2
1 0 1
0 1 1

 .
By direct calculation, we obtain the compact SVD of A as follows:

U2 =


2√
6 0

1√
6

1√
2

1√
6 − 1√

2

 , Σ2 =
(

3
1

)
, VT

2 =

 1√
6

1√
6

2√
6

1√
2 − 1√

2 0


Therefore, {vT

1 ,vT
2 } forms an orthonormal basis for the row space of A,

and the spanning coefficients for the row vectors of A are along the rows
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Singular Value Decomposition (SVD)

of the following matrix

U2Σ2 =


√

6 0
3√
6

1√
2

3√
6 − 1√

2



Similarly, {u1,u2} forms an orthonormal basis for Col(A) and the spanning
coefficients for the columns of A are along the columns of

Σ2VT
2 =

(
3

1

)
·

 1√
6

1√
6

2√
6

1√
2 − 1√

2 0

 =

 3√
6

3√
6

√
6

1√
2 − 1√

2 0


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Singular Value Decomposition (SVD)

MATLAB commands for computing matrix SVD

1. Full SVD

svd – Singular Value Decomposition.

[U,S,V] = svd(X) produces a diagonal matrix S, of the same dimension
as X and with nonnegative diagonal elements in decreasing order, and
orthogonal matrices U and V so that X = U*S*VT .

s = svd(X) returns a vector containing the singular values.
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Singular Value Decomposition (SVD)

2. Truncated SVD

svds – Find a few singular values and vectors.

S = svds(A,K) computes the K largest singular values of A.

[U,S,V] = svds(A,K) computes the singular vectors as well. If A is M-by-
N and K singular values are computed, then U is M-by-K with orthonormal
columns, S is K-by-K diagonal, and V is N-by-K with orthonormal columns.

In many applications, a truncated SVD is enough, and it is much easier to
compute than the full SVD.
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Singular Value Decomposition (SVD)

3. SVD Sketch

[U,S,V] = svdsketch(A) returns the singular value decomposition (SVD)
of a low-rank matrix sketch of A. The matrix sketch only reflects the
most important features of A (up to a tolerance), which enables faster
calculation of the SVD of large matrices compared to using SVDS.

[U,S,V] = svdsketch(A, tol) specifies a tolerance for the sketch of A such
that norm(U*S*V’-A,’fro’)/norm(A,’fro’) <= tol.
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Singular Value Decomposition (SVD)

Power method for numerical computing of SVD
Let A ∈ Rm×n be a matrix whose SVD is to be computed: A = UΣVT .
Consider C = AT A ∈ Rn×n. We have

C = V(ΣT Σ)VT =
∑

σ2
i vivT

i

C2 = V(ΣT Σ)2VT =
∑

σ4
i vivT

i

...

Ck = V(ΣT Σ)kVT =
∑

σ2k
i vivT

i

If σ1 > σ2, then the first term dominates, so

Ck → σ2k
1 v1vT

1 , as k →∞.
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Singular Value Decomposition (SVD)

Note that v1vT
1 is a rank-1 matrix, with columns being multiples of v1.

This means that a close estimate of v1 can be computed by simply taking
the first column of Ck (for some large k) and normalizing it to a unit
vector.

This method works but can be very costly due to the matrix power part,
which has a complexity of O(n3).
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Singular Value Decomposition (SVD)

A better approach. Instead of computing Ck, we select a random
vector x ∈ Rn and compute Ckx through a sequence of matrix-vector
multiplications (which are very efficient especially when one dimension of
A is small, or A is sparse):

Ckx = AT A · · ·AT Ax

Write x =
∑
civi (since v1, . . . ,vn form an orthonormal basis for Rn).

Then
Ckx ≈ (σ2k

1 v1vT
1 )
(∑

civi

)
= σ2k

1 c1v1.

Normalizing the vector Ckx for some large k then yields v1, the first right
singular vector of A.
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Singular Value Decomposition (SVD)

Applications of SVD
The matrix SVD has lots of applications such as

• Orthogonal best-fit plane

• Dimension reduction

• Image compression1

• Recommender systems (matrix completion)2

We will cover the first two applications later in the course.
1https://www.mathworks.com/help/matlab/math/image-compression-with-low-rank-svd.

html
2https://engineering.purdue.edu/ChanGroup/ECE695Notes/Lecture_SVT.pdf
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