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Generalized inverse and pseudoinverse

Recall
... that a square matrix A ∈ Rn×n is invertible if there exists a square
matrix B of the same size such that

AB = BA = I

In this case, B is called the matrix inverse of A and denoted as B = A−1.

Remark. A square matrix A ∈ Rn×n is invertible if and only if

• A has full rank (nonsingular), i.e., rank(A) = n

• A has a nonzero determinant: det(A) 6= 0
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Generalized inverse and pseudoinverse

Remark. For any invertible matrix A ∈ Rn×n and any vector b ∈ Rn, the
linear system Ax = b has a unique solution

x∗ = A−1b.

MATLAB command for solving a linear system Ax = b

A\b % recommended

inv(A) ∗ b % avoid (especially when A is large)
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Generalized inverse and pseudoinverse

What about general matrices?

Let A ∈ Rm×n be a square but singular matrix (m = n, det(A) = 0), or
a rectangular matrix (m 6= n).

We would like to address the following questions:

• Is there some kind of inverse?

• Given a vector b ∈ Rm, does the linear system Ax = b have
a solution?

– If yes, is the solution unique?

– Otherwise, is there some kind of approximate solution?
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Generalized inverse and pseudoinverse

More motivation: Least squares
In many practical tasks, the least squares problem arises naturally:

min
x∈Rn

‖Ax− b‖2 (where A ∈ Rm×n, b ∈ Rm are fixed)

Theorem. If A has full column rank (i.e., rank(A) = n ≤ m), then the
above problem has a unique solution, called least squares solution:

x∗ = (AT A)−1AT b

Proof. First, we rewrite the objective function as

f(x) = xT (AT A)x− 2xT (AT b) + ‖b‖2 ←− Convex , differentiable
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Generalized inverse and pseudoinverse

Next, we find all critical points by setting the gradient to zero:

∇f = 2AT Ax− 2AT b = 0.

Since rank(AT A) = rank(A) = n, the matrix AT A ∈ Rn×n is non-
singular, and consequently the above equation has one and only one
solution

x∗ = (AT A)−1AT b.

To show that it is a local minimizer (and thus also a global minimizer),
we compute the Hessian of f and obtain that

∇2f = 2AT A,

which is a positive definite matrix (because AT A is nonsingular).
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Generalized inverse and pseudoinverse

We want to better understand the following two matrices:

• (AT A)−1AT (pseudoinverse): The least squares solution is

x∗ = (AT A)−1AT b

• A(AT A)−1AT (projection matrix): Closest approximation of b is

Ax∗ = A(AT A)−1AT b
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Generalized inverse and pseudoinverse

Generalized inverse
Def 0.1. Let A ∈ Rm×n be any matrix. We call the matrix G ∈ Rn×m

a generalized inverse of A if it satisfies

AGA = A

Remark. If A is square and invertible, then (1) A−1 is a generalized inverse
of A and (2) it is the only generalized inverse of A:

G = A−1(AGA)A−1 = A−1(A)A−1 = A−1

This thus justifies the term “generalized inverse”.
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Generalized inverse and pseudoinverse

Remark. For a general matrix A ∈ Rm×n, its generalized inverse always
exists but might not be unique.

For example, let A = [1, 2] ∈ R1×2. Its generalized inverse is a matrix

G =
[
x

y

]
∈ R2×1 satisfying

[1, 2] = A = AGA = [1, 2]
[
x

y

]
[1, 2] = (x + 2y) · [1, 2].

This shows that any G =
[
x

y

]
∈ R2×1 with x + 2y = 1 is a generalized

inverse of A, e.g., G =
[
1
0

]
or G =

[
3
−1

]
.
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Generalized inverse and pseudoinverse

The following theorem indicates a way to find the generalized inverse of
any matrix.

Theorem 0.1. Let A =
[
A11 A12
A21 A22

]
∈ Rm×n be a matrix of rank r, and

A11 ∈ Rr×r. If A11 is invertible, then G =
[
A−1

11 O

O O

]
∈ Rn×m is a

generalized inverse of A.

Remark. Any matrix A ∈ Rm×n with rank r can be rearranged through
row and column permutations to have the above partitioned form with an
invertible r × r submatrix in the top-left corner. This theorem essentially
establishes the existence of a generalized inverse for any matrix.
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Generalized inverse and pseudoinverse

Example 0.1. Consider the following matrix

A =

1 2 3
4 5 6
7 8 9


Since rank(A) = 2 and the top-left 2× 2 block happens to be invertible,
we can easily find a generalized inverse

G =

−
5
3

2
3 0

4
3 −1

3 0
0 0 0


You are asked to verify that AGA = A.
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Generalized inverse and pseudoinverse

The generalized inverse can also be used to find a solution to a consistent
linear system (i.e., a system with at least a solution).

Theorem 0.2. Consider the linear system Ax = b. Suppose b ∈ Col(A)
such that the system is consistent. Let G be a generalized inverse of A,
i.e., AGA = A. Then x∗ = Gb is a particular solution to the system.

Proof. Multiplying both sides of Ax = b by AG gives that

(AG)b = (AG)Ax = (AGA)x = Ax = b.

This shows that x∗ = Gb is a particular solution to the linear system.
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Generalized inverse and pseudoinverse

Example 0.2. Consider the linear system Ax = b, where

A =

1 2 3
4 5 6
7 8 9

 , b =

 6
15
24

 .

It is consistent because x = 1 is a solution.

According to the theorem, a particular solution to the system is

x∗ = Gb =

−
5
3

2
3 0

4
3 −1

3 0
0 0 0


 6

15
24

 =

0
3
0


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Generalized inverse and pseudoinverse

Projection matrices

Def 0.2. A square matrix P is called a projection matrix if it is idempo-
tent, i.e., P = P2.

Remark. Let P be a projection matrix. Then

• P must be digonalizable;

• P have eigenvalues of 0 and/or 1. Moreover, the algebraic multi-
plicity of 1 is equal to the rank and trace of P.
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Generalized inverse and pseudoinverse

Remark. The following statements explain what a projection matrix does:

• A projection matrix P ∈ Rn×n projects any vector in Rn onto its
column space. To see this, let x ∈ Rn. Then

Px = [p1 . . . pn]


x1
...

xn

 =
∑

xipi ∈ Col(P).
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Generalized inverse and pseudoinverse

• A projection matrix projects every vector already in its column space
onto itself.

To see this, let v ∈ Col(P). Then there exists some x ∈ Rn such
that v = Px.

It follows that Pv = P(Px) = P2x = Px = v.
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Generalized inverse and pseudoinverse

Example 0.3. Below are two projection matrices:

P1 =
(

1 0
1 0

)
, P2 =

(
1
2

1
2

1
2

1
2

)

They have the same column space, which is the 45 degree line through
the origin in R2, and thus both project points in R2 onto the same line.
However, the ways they project points are different: For any x ∈ R2,

P1x =
(

1 0
1 0

)(
x1
x2

)
=
(

x1
x1

)

P2x =
(

1
2

1
2

1
2

1
2

)(
x1
x2

)
=
(

x1+x2
2

x1+x2
2

)
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Generalized inverse and pseudoinverse

b

b

b

x = (x1, x2)

P1x = (x1, x1)

P2x = (x1+x2

2 , x1+x2

2 )
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Generalized inverse and pseudoinverse

Theorem 0.3. Let A ∈ Rm×n with a generalized inverse G ∈ Rn×m. Then
P = AG ∈ Rm×m is a projection matrix.

Proof. From AGA = A, we obtain

(AG)(AG) = (AGA)G = AG.

This shows that AG is a projection matrix.

Remark. Similarly, GA ∈ Rn×n is also a projection matrix

(GA)(GA) = G(AGA) = GA
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Generalized inverse and pseudoinverse

Remark. AG and A must have the same column space. To see this,

(1) For any y ∈ Col(AG), there exists some x ∈ Rm such that y =
(AG)x. It follows that y = A(Gx) ∈ Col(A). This shows that
Col(AG) ⊆ Col(A).

(2) For any y ∈ Col(A), there exists some x ∈ Rn such that y = Ax.
Write y = (AGA)x = (AG)(Ax). This shows that y ∈ Col(AG).
Thus, Col(A) ⊆ Col(AG).
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Generalized inverse and pseudoinverse

Therefore, AG is a projection matrix onto the column space of A.

b
b

Pbb

Col(A)

b0

a1 a2

an

A ∈ Rm×n

a1 a2 an

P = AG

Similarly, GA is a projection matrix onto the row space of A.
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Generalized inverse and pseudoinverse

Example 0.4. Consider the matrix A and its generalized inverse G:

A =

1 2 3
4 5 6
7 8 9

 , G =

−
5
3

2
3 0

4
3 −1

3 0
0 0 0

 .

We have

AG =

1 2 3
4 5 6
7 8 9


−

5
3

2
3 0

4
3 −1

3 0
0 0 0

 =

 1 0 0
0 1 0
−1 2 0

 ,

which represents a projection matrix onto the column space of A.
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Generalized inverse and pseudoinverse

Pseudoinverse
Briefly speaking, the matrix pseudoinverse is a generalized inverse with
more constraints.

Def 0.3. Let A ∈ Rm×n. We call the matrix B ∈ Rn×m the pseudoin-
verse of A if it satisfies all four conditions below:

(1) ABA = A ←− B is a generalized inverse of A

(2) BAB = B ←− A is a generalized inverse of B

(3) (AB)T = AB ←− AB is symmetric

(4) (BA)T = BA ←− BA is symmetric

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 24/60



Generalized inverse and pseudoinverse

Remark.

• If B only satisfies (1), it is known as a generalized inverse of A;
if B only satisfies (1) and (2), it is called a reflexive generalized
inverse.

• For any matrix A ∈ Rm×n, the pseudoinverse always exists and is
unique. We denote the pseudoinverse of A as A†.

• A pseudoinverse is sometimes called the Moore–Penrose inverse,
after the pioneering works by E. H. Moore and Roger Penrose.

• The symmetric form of the definition implies B = A† and A = B†,
and thus, A = (A†)†.
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Generalized inverse and pseudoinverse

Example 0.5. Consider A = [1, 2] ∈ R1×2 again. We showed that any
matrix G = (x, y)T ∈ R2×1 with x + 2y = 1 is a generalized inverse of A:

[1, 2] = A = AGA = [1, 2]
[
x

y

]
[1, 2] = (x + 2y) · [1, 2].

To find its pseudoinverse, we need to write down three more equations:[
x

y

]
= G = GAG =

[
x

y

]
[1, 2]

[
x

y

]
= (x + 2y) ·

[
x

y

]

x + 2y = (AG)T = AG = [1, 2]
[
x

y

]
= x + 2y[

x y

2x 2y

]
= (GA)T = GA =

[
x

y

]
[1, 2] =

[
x 2x

y 2y

]
−→ 2x = y
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Generalized inverse and pseudoinverse

Solving the two equations together gives that

x = 1
5 , y = 2

5 .

Thus, the pseudoinverse of A is

A† =
[

1
5
2
5

]
.
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Generalized inverse and pseudoinverse

Example 0.6. Let A =
[
1 0
1 0

]
. Verify that A† =

[
1
2

1
2

0 0

]
.

By direct calculation,

AA† =
[
1 0
1 0

] [
1
2

1
2

0 0

]
=
[

1
2

1
2

1
2

1
2

]
(symmetric)

A†A =
[

1
2

1
2

0 0

] [
1 0
1 0

]
=
[
1 0
0 0

]
(symmetric)

AA†A =
[
1 0
1 0

] [
1
2

1
2

0 0

] [
1 0
1 0

]
=
[
1 0
1 0

]
= A

A†AA† =
[

1
2

1
2

0 0

] [
1 0
1 0

] [
1
2

1
2

0 0

]
=
[

1
2

1
2

0 0

]
= A†
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Generalized inverse and pseudoinverse

Example 0.7 (Cont’d). Consider the matrix again

A =

1 2 3
4 5 6
7 8 9


which has the following generalized inverse (i.e., AGA = A):

G =

−
5
3

2
3 0

4
3 −1

3 0
0 0 0


It can be verified that A is also a generalized inverse of G:

GAG = G

Thus, G is (at least) a reflexive generalized inverse of A.
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Generalized inverse and pseudoinverse

However, neither AG nor GA is symmetric:

AG =

1 2 3
4 5 6
7 8 9


−

5
3

2
3 0

4
3 −1

3 0
0 0 0

 =

 1 0 0
0 1 0
−1 2 0



GA =

−
5
3

2
3 0

4
3 −1

3 0
0 0 0


1 2 3

4 5 6
7 8 9

 =

1 0 −1
0 1 2
0 0 0



Therefore, G is not the pseudoinverse of A.
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Generalized inverse and pseudoinverse

Orthogonal projection matrices
Def 0.4. A square matrix P is called a orthogonal projection matrix if
it is both symmetric and idempotent, i.e., P = PT and P = P2.

b b

Pbb

Col(P)
b

0

(I−P)b

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 31/60



Generalized inverse and pseudoinverse

Let P ∈ Rn×n be any orthogonal projection matrix. Because it is still
a projection matrix, it must project any vector b ∈ Rn onto its column
space, i.e., Pb ∈ Col(P).

This leads to the following decomposition of b:

b = Pb + (I−P)b.

Since P = PT by definition, we have

(Pb)T (I−P)b = bT P(I−P)b = bT (P−P2)b = 0.

This shows that the two components, Pb and (I−P)b, are orthogonal
to each other.
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Generalized inverse and pseudoinverse

Example 0.8.

1 0 0
0 1 0
0 0 0

 ,

[
1
2

1
2

1
2

1
2

]
are orthogonal projection matrices,

but

 1 0 0
0 1 0
−1 2 0

 is not (it is just a projection matrix).

Example 0.9. The centering matrix Cn = In− 1
nJn is also an orthogonal

projection matrix (see notes for details).
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Generalized inverse and pseudoinverse

Theorem 0.4. For any matrix A ∈ Rm×n, AA† is an orthogonal projection
matrix (onto the column space of A).

Proof. First, A† is still a generalized inverse. Thus, AA† is a projection
matrix (onto the column space of A).

Secondly, since A† is the pseudoinverse of A, AA† must be symmetric.

Therefore, by definition, AA† is an orthogonal projection matrix.

Remark. Similarly, A†A is also an orthogonal projection matrix (onto the
row space of A).
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Generalized inverse and pseudoinverse

b b

Pbb

Col(A)

b0

a1 a2

an

A ∈ Rm×n

a1 a2 an

P = AA†

(I−P)b
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Generalized inverse and pseudoinverse

Finding matrix pseudoinverse

Let A ∈ Rm×n. Our goal is to find A† (which exists and is unique).

We first consider the following two special settings:

• A is a tall matrix with full column rank (i.e., rank(A) = n ≤ m).
Note that in this case, AT A ∈ Rn×n is invertible.

• A is a “diagonal” matrix (i.e., aij = 0 whenever i 6= j).

Afterwards, we present how to find the pseudoinverse of a general matrix
via its SVD.
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Generalized inverse and pseudoinverse

Theorem 0.5. Let A ∈ Rm×n be any tall matrix with full column rank
(i.e., rank(A) = n ≤ m). Then the pseudoinverse of A is

A† = (AT A)−1AT .

Proof. It suffices to verify the four conditions for being a pseudoinverse:

AA†A = A · (AT A)−1AT ·A = A
A†AA† = (AT A)−1AT ·A · (AT A)−1AT = A†

AA† = A(AT A)−1AT (symmetric)
A†A = (AT A)−1AT ·A = In (symmetric)

Therefore, A† = (AT A)−1AT is the pseudoinverse of A.
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Generalized inverse and pseudoinverse

Remark. The theorem implies that for any tall matrix A ∈ Rm×n with
full column rank (i.e., rank(A) = n ≤ m), the following is an orthogonal
projection matrix (onto the column space of A):

AA† = A(AT A)−1AT .
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Generalized inverse and pseudoinverse

Example 0.10. Find the pseudoinverse of A =

1 −1
0 1
1 0

 .

Solution: Observe that this matrix has full column rank (i.e., 2).

Since

AT A =
(

1 0 1
−1 1 0

)1 −1
0 1
1 0

 =
(

2 −1
−1 2

)

we have

A† = (AT A)−1AT = 1
3

(
2 1
1 2

)(
1 0 1
−1 1 0

)
= 1

3

(
1 1 2
−1 2 1

)
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Generalized inverse and pseudoinverse

It follows that the orthogonal projection matrix onto Col(A) is

AA† =

1 −1
0 1
1 0

 · 1
3

(
1 1 2
−1 2 1

)
= 1

3

 2 −1 1
−1 2 1
1 1 2



For instance, the orthogonal projection of 1 onto Col(A) is

AA†1 = 1
3

2
2
4

 = A · 1
3

(
4
2

)
︸ ︷︷ ︸

A†1

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 40/60



Generalized inverse and pseudoinverse

Remark. Let U ∈ Rm×n be a tall matrix with orthonormal columns (e.g.,
an orthonormal basis matrix). Then it has full column rank, and

UT U =


uT

1
...

uT
n

 [u1 . . . un] =


1

. . .
1

 = In

It follows that

• U† = (UT U)−1UT = UT (pseudoinverse), and

• UU† = UUT (orthogonal projection matrix).
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Generalized inverse and pseudoinverse

Example 0.11. Let

A =


1
2

1
2

1
2

1
2

1
2 −1

2
1
2 −1

2


which has orthonormal columns. Therefore, the pseudoinverse of A is
A† = AT and the orthogonal projection matrix is

AA† = AAT =


1
2

1
2

1
2

1
2

1
2 −1

2
1
2 −1

2


(

1
2

1
2

1
2

1
2

1
2

1
2 −1

2 −1
2

)
=


1
2

1
2 0 0

1
2

1
2 0 0

0 0 1
2

1
2

0 0 1
2

1
2


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Generalized inverse and pseudoinverse

Theorem 0.6. Let A ∈ Rm×n be a diagonal matrix, i.e., all of its entries
are zero except some of those along its diagonal. Then the pseudoinverse
of A is another diagonal matrix B ∈ Rn×m such that

bii =


1

aii
, if aii 6= 0

0, if aii = 0

Proof. We verify this result using an example. Let

A =
[
0 0 0
0 3 0

]
and B =

0 0
0 1

3
0 0

 .
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Generalized inverse and pseudoinverse

Then

AB =
[
0 0
0 1

]
and BA =

0 0 0
0 1 0
0 0 0


both of which are symmetric. Furthermore,

ABA =
[
0 0
0 1

] [
0 0 0
0 3 0

]
=
[
0 0 0
0 3 0

]
= A

BAB =

0 0 0
0 1 0
0 0 0


0 0

0 1
3

0 0

 =

0 0
0 1

3
0 0

 = B.

Thus, B is the pseudoinverse of A.
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Generalized inverse and pseudoinverse

Theorem 0.7. Let A ∈ Rm×n be an arbitrary matrix. Suppose its full SVD
is A = UΣVT . Then the pseudoinverse of A is

A† = VΣ†UT

Proof We verify the four conditions directly:

AA†A = UΣVT ·VΣ†UT ·UΣVT = UΣΣ†ΣVT = UΣVT = A
A†AA† = VΣ†UT ·UΣVT ·VΣ†UT = VΣ†ΣΣ†UT = VΣ†UT = A†

AA† = UΣVT ·VΣ†UT = UΣΣ†UT (symmetric)
A†A = VΣ†UT ·UΣVT = VΣ†ΣVT (symmetric)
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Generalized inverse and pseudoinverse

Remark. The formula for A† is also in (full) SVD form:

A† = VΣ†UT

It can be simplified to the compact SVD form

A† = VrΣ−1
r UT

r

Thus, it suffices to find the compact SVD of A and use it to find A†.

This simplified formula is computationally more efficient, as it avoids
computing the redundant left/right singular vectors.
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Generalized inverse and pseudoinverse

Example 0.12. Consider again the matrix (with compact SVD)1 −1
0 1
1 0


︸ ︷︷ ︸

A

=


2√
6 0

− 1√
6

1√
2

1√
6

1√
2


︸ ︷︷ ︸

U2

·
(√

3 0
0 1

)
︸ ︷︷ ︸

Σ2

·

 1√
2

1√
2

− 1√
2

1√
2

T

︸ ︷︷ ︸
VT

2

By the last theorem,

A† =

 1√
2

1√
2

− 1√
2

1√
2


︸ ︷︷ ︸

V2

·
( 1√

3 0
0 1

)
︸ ︷︷ ︸

Σ−1
2

·


2√
6 0

− 1√
6

1√
2

1√
6

1√
2


T

︸ ︷︷ ︸
UT

2

= 1
3

(
1 1 2
−1 2 1

)
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Generalized inverse and pseudoinverse

Let A = UrΣrVT
r be the compact SVD of a matrix A ∈ Rm×n. We al-

ready know that the columns of Ur form an orthonormal basis for Col(A),
and thus Col(Ur) = Col(A). Intuitively, the orthogonal projection matri-
ces onto them must be the same, i.e.,

AA† = UrUT
r .

Consequently, we could just use the matrix Ur (which has orthonormal
columns) to compute the orthogonal projection matrix.

This idea can be verified as follows:

AA† = UrΣr VT
r ·Vr︸ ︷︷ ︸

Ir

Σ−1
r UT

r = UrΣrΣ−1
r UT

r = UrUT
r .
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Generalized inverse and pseudoinverse

Example 0.13. In the preceding example, we have already obtained the

compact SVD of the matrix A =

1 −1
0 1
1 0

.
Thus, we could compute the orthogonal projection matrix onto the column
space of A as follows:

U2UT
2 =


2√
6 0

− 1√
6

1√
2

2√
6

1√
2


 2√

6 − 1√
6

1√
6

0 1√
2

1√
2

 = 1
3

 2 −1 1
−1 2 1
1 1 2


It is the same with that obtained in Example 0.10.
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Generalized inverse and pseudoinverse

Example 0.14. Find the pseudoinverse of A =
[
1 0
1 0

]
.

Observe that rank(A) = 1. Thus, we can obtain its compact SVD easily:

A =
(

1
1

)(
1 0

)
=

 1√
2

1√
2

 · √2 ·
(
1 0

)
It follows that the orthogonal projection matrix is

AA† =

 1√
2

1√
2

( 1√
2

1√
2

)
=
(

1
2

1
2

1
2

1
2

)

How to find A† by using the compact SVD?
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Generalized inverse and pseudoinverse

MATLAB function for computing pseudoinverse
pinv Pseudoinverse.

X = pinv(A) produces a matrix X of the same dimensions
as A′ so that A ∗X ∗A = A, X ∗A ∗X = X and A ∗X and X ∗A

are Hermitian. The computation is based on SV D(A) and any
singular values less than a tolerance are treated as zero.

pinv(A, TOL) treats all singular values of A that are less than TOL as
zero. By default, TOL = max(size(A)) ∗ eps(norm(A)).
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Generalized inverse and pseudoinverse

Applications of matrix pseudoinverse

• Linear least squares

• Minimum-norm solution to a consistent linear system
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Generalized inverse and pseudoinverse

Linear least squares

Consider a system of linear equations Ax = b where A ∈ Rm×n (not
necessarily of full column rank) and b ∈ Rm.

In general, a vector x that solves the system may not exist, or if one does
exist, it may not be unique.

In either case, we seek a least squares solution instead by solving the
following general least squares problem

min
x∈Rn

‖Ax− b‖

This problem always has a solution, as the next slide shows.
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Generalized inverse and pseudoinverse

Theorem 0.8. A minimizer of the
general least squares problem is

x∗ = A†b.

Proof. Since Ax ∈ Col(A), the op-
timal x should be such that

Ax = (AA†)b

Obviously, x∗ = A†b solves this
equation and thus is a solution of the
least squares problem (but it might
not be the only solution).

b b

Ax
b

Col(A)

b
0

a1 a2

an

Remark. If A has full column rank
(i.e., rank(A) = n ≤ m), then the
least squares solution is unique: x∗ =
A†b = (AT A)−1AT b.
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Generalized inverse and pseudoinverse

Minimum-norm solution to a consistent linear system

For under-determined systems Ax = b, the pseudoinverse may be used to
construct the solution with minimum Euclidean norm among all solutions.
Theorem 0.9. Let A ∈ Rm×n and b ∈ Rm. If the linear system Ax = b
has solutions, then x∗ = A†b is an exact solution and has the smallest
possible norm, i.e., ‖x∗‖ ≤ ‖x‖ for all solutions x.

b

Ax = b

minimum-norm solution
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Generalized inverse and pseudoinverse

Proof. First, since A† is a generalized inverse, it must be a solution to
Ax = b. To show that it has the smallest possible norm, for any solution
x ∈ Rn, consider its orthogonal decomposition via A†A ∈ Rn×n:

x = (A†A)x + (I−A†A)x = A†b + (I−A†A)x

It follows that

‖x‖2 = ‖A†b‖2 + ‖(I−A†A)x‖2 ≥ ‖A†b‖2

This shows that ‖x‖ ≥ ‖A†b‖.
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Generalized inverse and pseudoinverse

Summary
• Generalized inverse G ∈ Rn×m for a matrix A ∈ Rm×n:

– Definition: AGA = A

– Existence: G always exists but might not be unique

– Computing : A =
[
A11 A12
A21 A22

]
−→ G =

[
A−1

11 O

O O

]
, if

A11 ∈ Rr×r, r = rank(A) is invertible.

– Property : AG is a projection matrix onto Col(A)

– Application: x = Gb is a solution to Ax = b (if consistent)
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Generalized inverse and pseudoinverse

• Pseudoinverse A† ∈ Rn×m for a matrix A ∈ Rm×n:

– Definition: AA†A = A†, and A†AA† = A, and both
AA†, A†A are symmetric

– Existence: A† always exists and is unique

– Computing :

∗ If A has full column rank: A† = (AT A)−1AT

∗ If A is “diagonal”: A† ∈ Rn×m is also “diagonal” with
reciprocals of nonzero diagonals of A
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Generalized inverse and pseudoinverse

∗ In general: A† = VrΣ−1
r UT

r (using compact SVD A =
UrΣrVT

r )

– Property : AA† is an orthogonal projection matrix onto Col(A),
and AA† = UrUT

r

– Application: For any A ∈ Rm×n, b ∈ Rm, the vector A†b
solves the least squares problem

min
x∈Rn

‖Ax− b‖

∗ If A has full column rank, then the solution is unique.

∗ If Ax = b has exact solutions, then A†b is the minimum-
norm solution.
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Generalized inverse and pseudoinverse

Next time: Matrix norm and low-rank approximation

Read the book chapter on the topic.
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