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Dimensionality reduction for classification

Dimensionality reduction methods

• Principal Component Analysis
(PCA): preserving overall vari-
ance

• Linear Discriminant Analysis
(LDA): preserving between-
class separation
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I will also introduce 2DLDA, a variant of LDA that can directly work on
matrix data.
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Principle Component Analysis (PCA)
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PCA for labeled data
In the supervised setting (when data points have labels), one can perform
PCA on the full data set without using the labels to project the different
classes onto the same PCA plane.
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We call this procedure global PCA.
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PCA for classification
Note that in classification, there are two data sets: Xtrain and Xtest.

One should perform global PCA on
the training set

Xtrain − 1mT
train = UtrainΣtrainVT

train

and use it to project both sets of
data onto the PCA plane:

Ytrain = UtrainΣtrain

Ytest =
(
Xtest − 1mT

train

)
·Vtrain

+
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Finally, select a classifier to work in the reduced space, e.g.,

• PCA + kNN

• PCA + nearest local centroid

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 7/35



Dimensionality reduction for classification

PCA (s) + 3NN on the MNIST digits

Remark.

• PCA with s = 154 preserves
95% variance

• 3NN on the original data has
a 2.94% error rate.

• PCA (s = 50) + 3NN has the
lowest test error (2.50%).
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PCA (s = 50) + NLC (k) on the MNIST digits
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Some further comments
PCA is an unsupervised method, and the 95% criterion is a conservative
choice which discards only the directions with smallest amounts of variance.

In the context of classification it is possible to get much lower than this
threshold while maintaining or even improving the classification accuracy.

The reason is that large-variance directions are representative, but not
necessarily discriminatory.

In practice, one may want to use cross validation to select the optimal
projection dimension.
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Linear Discriminant Analysis (LDA)
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LDA for classification
First, apply global PCA to the labeled data (see slide 6),

Xtrain −→ Ytrain, and Xtest −→ Ytest,

to reduce the dimensionality and meanwhile and avoid the singularity issue
for LDA.

Next, perform LDA on the PCA-reduced training data Ytrain:

Ytrain −→ Vlda

Ztrain = Ytrain ·Vlda
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We extend LDA to the PCA-reduced test data Ytest as follows:

Ztest = Ytest ·Vlda

Lastly, just select a classifier to make predictions for Ztest based on Ztrain:

• (PCA +) LDA + kNN

• (PCA +) LDA + nearest local centroid
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LDA on the MNIST digits
Left: kNN; right: NLC

LDA is much worse than PCA (50) on this data set!
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Two-dimensional LDA (2DLDA)
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What is 2DLDA?

Both PCA and LDA require vectorizing the images. The projections are
also in vector form.

2DLDA treats images as two-dimensional signals and works with matrices
directly (no vectorization needed). The projections will still be images
(but smaller in size).

2DLDA has the advantage of preserving information along both dimensions
(i.e., rows and columns).
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How does 2DLDA work?
2DLDA transforms r × c images to smaller r′ × c′ images.

Let X ∈ Rr×c be a given image. The transformation is defined by two tall
matrices with orthonormal columns, denoted by L ∈ Rr×r′ and R ∈ Rc×c′ :

r × c

X YRLT

r′ × c′r′ × r c× c′

Like LDA, 2DLDA finds the best transformations L,R by

max
L,R

between-class scatter
within-class scatter
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Notation and definitions
Let Xi ∈ Rr×c, 1 ≤ i ≤ n be the images in the training set, which consist
of k classes C1, . . . , Ck.

Let
Mj = 1

nj

∑
X∈Cj

X

be the (matrix) mean of class j, and

M = 1
n

∑
1≤j≤k

∑
X∈Cj

X = 1
n

∑
j

njMj

the global mean.
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In the original image space, define

• Within-class scatter:

s2
w =

∑
j

∑
X∈Cj

‖X−Mj‖2F

• Between-class scatter:

s2
b =

∑
j

nj‖Mj −M‖2F
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In the projection space, define

• Within-class scatter:

s̃2
w =

∑
j

∑
X∈Cj

‖LT XR − LT MjR‖2F

=
∑

j

∑
X∈Cj

‖LT (X−Mj)R‖2F

• Between-class scatter:

s̃2
b =

∑
j

nj‖LT (Mj −M)R‖2F
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The mathematical formulation of 2DLDA
2DLDA aims to maximize the between-class scatter (s̃2

b) while minimizing
the within-class scatter (s̃2

w) in the projection space by solving

max
L,R

s̃2
b

s̃2
w

=
∑

j nj‖LT (Mj −M)R‖2F∑
j

∑
X∈Cj

‖LT (X−Mj)R‖2F

where L ∈ Rr×r′
,R ∈ Rc×c′ are tall matrices with orthonormal columns.

Note. The projected images will be given by

Yi = LT XiR ∈ Rr′×c′
, ∀ i
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Rewriting the problem
Using the trace properties we first rewrite the within-class scatter as follows∑

j

∑
X∈Cj

‖LT (X−Mj)R‖2F

=
∑

j

∑
X∈Cj

trace
(
LT (X−Mj)RRT (X−Mj)T L

)

= trace

∑
j

∑
X∈Cj

LT (X−Mj)RRT (X−Mj)T L


Note that LT and L may be factored out of the double summation (but
still within the trace operator).
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Similarly, for the between-class scatter,∑
j

nj‖LT (Mj −M)R‖2F

= trace

∑
j

njLT (Mj −M)RRT (Mj −M)T L


The 2DLDA problem now becomes

max
L,R

trace
(∑

j njLT (Mj −M)RRT (Mj −M)T L
)

trace
(∑

j

∑
X∈Cj

LT (X−Mj)RRT (X−Mj)T L
)
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Solving the problem

The joint optimization problem over L,R is very difficult to solve.

We consider a special case when R is given. The problem reduces to

max
L

trace
(
LT SR

b L
)

trace (LT SR
w L)
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where

SR
w =

∑
j

∑
X∈Cj

(X−Mj)RRT (X−Mj)T ∈ Rr×r

SR
b =

∑
j

nj(Mj −M)RRT (Mj −M)T ∈ Rr×r

The maximizer L = [l1 . . . lr′ ] is found by solving

SR
b lj = λj SR

w lj ←→
(
SR

w

)−1
SR

b lj = λjlj

for each j = 1, . . . , r′.
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Remark.

• Both matrices SR
w ,SR

b have the size of r × r, and thus are much
smaller than their counterparts in LDA which have a size of d×d with
d = rc. Therefore, this problem is much easier to solve numerically.

• In general SR
w is nonsingular, so the singularity issue with LDA does

not exist in 2DLDA.
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Similarly, if L is given to us, then the problem maybe written as

max
R

trace
(∑

j njRT (Mj −M)T LLT (Mj −M)R
)

trace
(∑

j

∑
X∈Cj

RT (X−Mj)T LLT (X−Mj)R
) =

trace
(
RT SL

b R
)

trace (RT SL
wR)

where

SL
w =

∑
j

∑
X∈Cj

(X−Mj)T LLT (X−Mj) ∈ Rc×c,

SL
b =

∑
j

nj(Mj −M)T LLT (Mj −M) ∈ Rc×c.

The corresponding maximizer is given by the first c′ eigenvectors of(
SL

w

)−1 SL
b ∈ Rc×c.
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Algorithm for 2DLDA
The previous discussions motivate us to solve the 2DLDA problem using
an iterative procedure:

1. Initialize R =
(

Ic′×c′

0(c−c′)×c′

)
∈ Rc×c′

2. Iterative until convergence:

• L←− top r′ eigenvectors of
(
SR

w

)−1 SR
b

• R ←− top c′ eigenvectors of
(
SL

w

)−1 SL
b

3. Return final versions of L and R
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MATLAB code for 2DLDA
2DLDA is not implemented in MATLAB.

However, there is a toolbox available at MATLAB File Exchange:

http://www.mathworks.com/matlabcentral/fileexchange/20174-
2dlda-pk-lda-for-feature-extraction

The function to use is

[R, L] = iterative2DLDA(trainImages, trainLabels+1, 10, 10, 28, 28)

% Columns are images
% Labels must start at 1
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Ways of using 2DLDA

Like LDA, 2DLDA is a supervised dimensionality reduction methods.

It has the following usage:

• 2DLDA + a classifier (e.g., kNN, kmeans, LDA/QDA, Naive Bayes)

• 2DLDA + LDA + a classifier
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2DLDA on the MNIST digits

See poster at

https://www.sjsu.edu/faculty/guangliang.chen/Math285S16/poster-2DLDA.pdf

Note that the nearest local centroid classifier is formerly referred to as the
local kmeans classifier in the poster.
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Comparison between LDA and 2DLDA
Both are supervised methods aiming to preserve discriminative information.

• 2DLDA is more flexible (can project data down to any size r′ × c′)

• 2DLDA does not have the singularity issue (no PCA needed)

• 2DLDA is harder to solve (as it has two matrices to choose, so
that we can only use alternating optimization) but individual linear
algebra problems are much easier to solve (as the scatter matrices
are smaller)

Lastly, remember that 2DLDA can be used along with LDA.
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HW2
This assignment is also based on the Fashion-MNIST data set. Formatting
requirements are the same with HW1.

1. Apply the plain kNN classifier, for each k = 1, . . . , 12, to the
following two different projections of the data:

(a) PCA with 95% variation preserved

(b) PCA with a dimension of your own choice (that would lead to
lower test errors than the 95% criterion)

Plot both sets of test errors against k. How do they compare with
those obtained on the original data (i.e., no PCA projection)?
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2. Repeat Question 1 with the NLC classifier instead.

3. First use PCA 95% + LDA to reduce the dimensionality of the data
set and then apply the plain kNN classifier, for each k = 1, . . . , 12,
to the projected data. Plot the test error curve as a function of k
and compare with that of PCA 95% + kNN.
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