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e Bayes classification rule
e Examples of Bayes classifiers

— Discriminant Analysis: LDA, QDA

— Naive Bayes: Gaussian, Bernoulli, Multinomial, Multivariate
multinomial

e Assignment 3



Bayes classifiers

Recall the statistical perspective of classifcation

Let X € R? Y € R be two random variables representing the location and
label of a data point to be observed. Suppose they have a joint distribution
[y, and marginal distributions f¢ (continuous) and fy (discrete).

The training data can be modeled by a random sample from the joint

distribution:
= = iid
(X].?Y].)a"')(Xn)Yn) ~ fX,Y

The test data (without labels) is an independent sample from the marginal
distribution of X
Xot1,-- o, Xnam ~ [z
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Bayes classifiers

The problem of classification is thus to predict the value of the label Y
for each of the test point locations Xn+j, 1<7<m.
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Bayes classifiers

How to classify a new sample naively
Let the range of Y be {1,2,...,c}, with probabilities
PY=j)=m, 1<j<c
We call 7; a prior probability, i.e., the probability that a new point belongs

to class j before it is seen (i.e., the value of X has not been observed).

A naive way would be to assign any new data point to the class with the
largest prior probability

J = argmax; m;

This method makes a constant prediction (i.e., the most frequent value of

Y') with test error rate 1 — 7.
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Bayes classifiers

We don't know the true values of 7;, so we'll estimate them using a
random sample from the joint distribution:

a ”a 1id
(Xl)}/l)) ] (Xn7Yn) ~ fX'7Y

Let the count of the observations in the above sample that come from
class j be

Nj:zn:I(Yz':j), 1<j<ec
=1
Then
E(N;) =) El(Y;=5)]=) (1 7 +0-(1-m))=nm,
i=1 =1

This shows that N;/n is an unbiased estimator of ;.
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Bayes classifiers

When given a specific training data set:

(X17y1)7 sy (Xna yn)a

a point estimate of 7; is thus

nj=3 Iwi=3), 1<j<c
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Bayes classifiers

Bayes classification rule

Given a new data point x, a better way is to assign the label based on the
largest posterior probability:

A

| = argmax; P(Y =j | X = x) «— generic Bayes classifier
The Bayes classifier is optimal with Bayes error rate
1-Eg (max P(Y =j | X’))

This is the lowest possible test error rate that may be achieved by a

classifier.
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Bayes classifiers

Remark. Recall that kNN is also a Bayes classifier (but it is nonparametric):

__ #nearest neighbors from class j

PY=j|X=x)~
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Bayes classifiers

Model-based Bayes classification
Suppose that for each j =1,... ¢,
fY =j) = fi(x).

The joint distribution of X and Yis

fey(xY =j)=f(x|Y =j)P(Y =)
= fi(x)m;

and the marginal density of X is

fr(x) = Zf){",y(xay =Jj)= Z%‘fj(x)
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Bayes classifiers

According to Bayes' rule, the posterior probabilities are given by
fx|Y =j)-P(Y =)
f(x)

Therefore, the Bayes classification rule can be stated as

P(Y=j| X =x) = x fi(x)m)

5’ = argmax; f; (x) - 7 +— model-based Bayes classifier
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Bayes classifiers

Estimating class-conditional probabilities f;(x)
We need to select a template (i.e., model) for each component first.
Different kinds of f;(x) lead to different Bayes classifiers:

e LDA/QDA - multivariate Gaussian distributions
1

() — —5 (k=) "B (x—py) -
fJ(X)_ (27T)d/2|2j’1/2e 2 J ’ ]_17"'70
¢ Naive Bayes - by assuming independent featuresin x = (x1,...,24):
d
fi(x) = H fik(zr) +— 1D distributions to be specified
k=1
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Bayes classifiers

What are multivariate Gaussians?

Briefly speaking, they are generalizations of the 1D Gaussian distribution

f(x) 1 _@
X)) = e 20
V2mo?

to higher dimensions:

1

_ L x—p) T (x— d
$09 = ryaagae IO, VxR

Remark. If ¥ = oI (i.e., constant diagonal), then the above formula

reduces to
1 IES d
f(x) = —(27r02>d/2e 22, VxeR
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Bayes classifiers

In the pdf of a multivariate Gaussian,
o 1 € R?: center of the distribution

e ¥ € R¥: covariance matrix
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Bayes classifiers

The Bivariate normal (d = 2)

2
X — <5E1> . p= (Nl) . »= ( 01 P01202>
T2 H2 po102 o5

The joint density is

Write

f(@1,22) !
T1,Tp) = ——————————
bz 2wo1094/1 — p?
1 (21— m)® | (22— p2)®  2p(xy — pa) (22 — p2)
exXp\ — 2 2 + 2 -
2(1 - P ) g1 g3 0102
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Bayes classifiers

Marginals of the bivariate normal are 1D normal distributions: N(u;,c?)
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Bayes classifiers

Bayes classification with multivariate Gaussians

Under such a mixture of Gaussians model,

1

(x) — — 3 (x—pj) TS (x—py) -
510 = rppg e I V=

e

the Bayes classification rule (for a new data point x)

A~

| = argmax; f;(x)m;
becomes the following:

5 1 00 )) T (e y)
= argmaxj We 2 J J J

1 1 _
= argmax; logm; — 5 log |3;] — Q(X — uj)TEj Y(x — )
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Bayes classifiers

Example 0.1. Let's consider the special case of two 1D Gaussians:

[ 2
[ 2

M1 M2

Suppose we know the true values of 1, j2,01,092. The corresponding
Bayes decision rule is

(z — )

N 1
| = ] 2 2y _
J = argmax; logm; — o og(oj) 20]2
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Bayes classifiers

Remark.

e If m; = w9 and o1 = o9, then the rule will assign = to the closer
mean f; (larger m; will favor the class further).

e The boundary point can be found by solving the following (quadratic)
equation

(z — p2)?

(z — m)?
203

1 2
207 = logmg — 5 log(o5) —

1
logm — B log(c?) —
To simplify the math, we assume that the two components have
equal variance (i.e., 01 = 02 = o), in which case we obtain

2]
m:M1+M2+U og(my/m2)
2 H2 — 1

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 19/51



Bayes classifiers

Quadratic Discriminant Analysis (QDA)

The decision boundary of a classifier consists of points that have a tie.
For the Bayes classification rule based on a mixture of Gaussians model,
the decision boundaries are given by

1 1 _
logmj — 5 log 3] = 5 (x — )" ;71 (x — )

1 1 _
=logm — 5 log 3| — S(x — 1) E (% — pa)
This shows that such a Bayes classifier has quadratic boundaries (between

each pair of training classes), and is thus called Quadratic Discriminant
Analysis (QDA).
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Bayes classifiers

Parameter estimation for QDA
The QDA classifier
- 1 1 T—1
J = argmax; logm; — §log 13| — i(x — ) B (x — )

depends on the model parameters ;, p;, 3; but their true values are
typically unknown.

Given training data, we estimate them as follows:

A ”j ¢ 1 o \T
= = — Z X, 3= (x = fj) (x — f;)
n’ " xec; nj xeC;
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Bayes classifiers

LDA (left) and QDA (right)
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Bayes classifiers

Linear Discriminant Analysis (LDA)

In QDA we assume that the component distributions are all multivariate
Gaussians but allow them to have separate means p; and covariances X;.

However, these are a lot of parameters to be estimated from the training
data (especially when the dimension is large).

There is also a risk of overfitting the data.

To ease the computational burden, we assume that all the components

have the same covariance

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 23/51



Bayes classifiers

In this special setting, the Bayes classification rule becomes
. 1 _
J = argmax; logm; — §(x — )2 (x — )

1
= argmax; xTZ_luj — 5;&?2_1;@ + log ;.

The corresponding decision boundary is

_ 1 _ _ 1 _
xI's luj — éuJTE lp,j +logm; = xSy — §u4TE Yyg + log

which simplifies to

_ 1 _ _ Y
XISy — o) = (1] 1y — uf = ) + log —
J

This is a hyperplane with normal vector =1 (p; — pa).
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Bayes classifiers

Parameter estimation for LDA

Similarly, we can use the training data to estimate the parameters 7;,

as follows:

A n.
wj:—] ‘:_E X
n

" xeC}

For the shared covariance matrix 2, we use the following pooled estimator:

pi)( )

] lxeC

This leads to the following practical LDA classifier:

N - 1
J = argmax; xT'31 i — §uTE [+ log ;.
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Bayes classifiers

When statistics meets optimization

We have introduced LDA both as a supervised dimensionality reduction
method and as a Bayes classifier. This is not a conflict in name.

In the two-class setting,

e As a classifier, the LDA decision boundary is a hyperplane with
normal vector 371 (f1; — f12).

e As a dimensionality reduction technique, LDA projects the data onto
the following direction

v =S5, (m; — my)
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Bayes classifiers

It turns out that the two vectors are the same:

Jj=1x€eC;j
m; = fiq
my = fiy

This shows that the two LDAs are indeed the same thing.

Therefore, we can combine both perspectives to fully understand LDA (see
next slide).
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Bayes classifiers

Remark. LDA

e is a linear classifier (which clas-
sifies data using a hyperplane)

e uses a mixture of Gaussians

model (with equal covariance)
e is a Bayes classifier

e projects data onto the most

discriminative direction

e is also applicable to data from
other distributions
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Bayes classifiers

MATLAB implementation of LDA/QDA
% fit a discriminant analysis classifier
md| = fitcdiscr(trainData, trainLabels, 'DiscrimType’, type)
% where type is one of the following:
e ‘Linear’ (default): LDA

e ‘Quadratic’: QDA

% classify new data

pred = predict(mdl, testData)

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 29/51



Bayes classifiers

Python scripts for LDA/QDA

from sklearn.discriminant__analysis import LinearDiscriminantAnalysis

#from sklearn.discriminant_analysis import QuadraticDiscriminant-
Analysis

|da = LinearDiscriminantAnalysis()
pred = Ida.fit(trainData,trainLabels).predict(testData)

print("Number of mislabeled points:  %d" %(testLabels !=
pred).sum())
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Bayes classifiers

The singularity issue in LDA/QDA

Both LDA and QDA require inverting covariance matrices, which may be
(nearly) singular in the case of high dimensional data.

Common fixes:
e Apply PCA to reduce dimensionality first, or
e Regularize the covariance matrices, or
e Use psuedoinverse: 'pseudolinear’, 'pseudoQuadratic’:

1 .
($.)' = (@AQT) = QA'QT, Al = { v
07 >\z=O
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Bayes classifiers

LDA/QDA on the MNIST

See poster at

https://www.sjsu.edu/faculty/guangliang.chen/Math285516/poster-DA.pdf
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Bayes classifiers

Naive Bayes
The naive Bayes classifier is also based on the Bayes decision rule:
J= argmax; f;(x)m;
Unlike Discriminant Analysis (LDA/QDA) which assumes that X, when
conditioned on Y = j, follows a multivariate Gaussian distribution f;(x),

Naive Bayes assumes that the individual components of X = (X1,...X4q)
are conditionally independent given a class Y = j:

d d
fix) = fex | Y =4) = [ fx.(as | Y = 5) = ] fo(s)-
s=1

s=1
This thus reduces the high dimensional density estimation problem ({ f;(x)};)
to a union of simple 1D problems ({ fs;(xs)};,s)-
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Bayes classifiers

Depending on the data types and the corresponding models used for the
component density functions { fs;(xs)}; s, the naive Bayes classifier has
different versions:

e Continuous data: Gaussian naive Bayes
e Binary/Boolean data: Bernoulli naive Bayes
e Frequency/count data: Multinomial naive Bayes

e Categorical/discrete data: multivariate multinomial naive Bayes
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Bayes classifiers

Gaussian naive Bayes

For continuous features (e.g., image data), the standard choice for modeling
{fsj(zs)}.s is the 1D normal distribution:

1 1 N2 /952
Fij(5) = —m=——e (BT Ha) /20,
V2mosj
where fi5;,05; can be estimated similarly using the training data (in every
class j and in every dimension s).

The resulting classification rule for a new data point x = (x1,...,24) is
d
| = argmax; log ﬁj — Z {1og C}sj + (xs - ﬂsj)Q/Qﬁgj]
s=1
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Bayes classifiers

Gaussian naive Bayes can be used to classify digital images (such as the
MNIST handwritten digits).

In this case, each pixel is a feature, and their intensities are assumed to
be independent random variables.
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Bayes classifiers

Improving Gaussain naive Bayes

1. Independence assumption: Ap-
ply PCA to obtain uncorrelated
features (closer to being indepen-
dent) and meanwhile get rid of
low-variance dimensions

2. Choice of distribution: Use ker-
nel smoothing instead of Gaussian

to better model feature distributions
However, this will be at the expense
of speed.
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Bayes classifiers

Bernoulli naive Bayes

For binary features (i.e., 0/1 valued), we can use the Bernoulli distribution

to modeling them:

fsj(@s) = pG (1 —psy)' ™", x5=0,1

where p,; is the probability of X taking the value of 1 within class j.
Similarly, it can be estimated using the training data.

The resulting classification rule for a new data point x = (x1,...,24) is
. d
j = argmax; log#tj + Y [w5log ps; + (1 — 5) log(1 — ps;)]
s=1
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Bayes classifiers

Remark. Bernoulli naive Bayes is a linear classifier, because for each j,

d
logfrj + Z [335 10gﬁsj + (1 - l‘s) IOg(l - ﬁsj)]
s=1

d .
=log tj + Z s log ps{ +log(1 — psj)
s=1 1_psj

:WJT-x—i—bj

where
P by ) !
1j dj . .
w;=(log——=—,...;log——— | , bj=loga;+ » log(l— ps;
! ( 1= Py l_pdj> ’ ’ szzl (1= Py)
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Bayes classifiers

Remark. Bernoulli naive Bayes is popular for document classification tasks
where binary term occurrence features are used (1 if the term occurs in
the document, 0 otherwise).

terms
HHIXAHKHXAHKXKAHKXKXAHKXKXAXXXXXXX

1 1 1 1
11 1 1 1

documents
E BB EEEEEER

— p—
— p—
—
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Bayes classifiers

Multinomial naive Bayes

This Bayes classifier is very useful for modeling count data, such as the
bag-of-words model for text documents.
terms
XX KKK KKK KKXKKXX XXX X

4 105 1 2
1 7 7 6

documents
EEEEEEEEEEN

Dr.

et
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Bayes classifiers

To classify text documents, multinomial naive Bayes assumes that each
document is a collection of frequency counts

—

X = (X1, Xs,...,X0)

of terms that are randomly and independently selected from a vocabulary
of size d according to a multinomial distribution at the class level:

. z)! 2
fi(x) = f)?\Y(X Y =)= (lz_[:—;') prf]s-, for all z1,...,25 >0
8t s=1

where j is fixed and
psj > 0, for each 1 <s < d, and Zpsj =1

are the probabilities of generating terms from a fixed topic.
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Bayes classifiers

It can be shown that the MLE of p,; based on the jth training class is

n; . nj .
i i
Dsi =1 Laplace i 1
81T 4 ny ] -
Z Z]: 1’51) smoothing d+ Z Z LL‘
s=11=1 s=11=1

where 21 is the (observed) frequency of word s in the ith document of

class j and

e > xgz): word count of sth term over all documents in class j

3
<l

d
e > Z . total word count of class j
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Bayes classifiers

The resulting classification rule for a new data point x = (z1,...,24) is

j = argmax; 7;f;(x)
d
= argmax; log7; + Z Ts1og Ps;
s=1
_ T
= argmax; w; - X +b;
where
N L \T A
w; = (logpij,. .. ,logpdj) ,  bj =log7.
This shows that like Bernoulli naive Bayes, multinomial naive Bayes is also
a linear classifier.
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Bayes classifiers

Comments on multinomial naive Bayes!
Overall, naive Bayes is not naive!
e Very fast, low storage requirements
e Robust to irrelevant features
e Very good in domains with many equally important features
e Optimal Bayes classifier if the independence assumptions hold

e A good dependable baseline for text classification

"https://web.stanford.edu/~jurafsky/slp3/slides/7_NB.pdf
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Bayes classifiers

Multivariate multinomial naive Bayes

For X = (X1,...,Xy), they are assumed to be
independent. We then fit a joint model for them within each class.
Suppose X, has L distinct levels, which occur in class j with probabilities

P(Xs=t|Y=j4)=p7, t=1,...L

It can be shown that the MLE of p(e-) is the observed fraction of level ¢ of

sj
X, in class j. Then for a data point x = (z1,...,24), the decision rule is
R d d (@)
J = argmax; 7; H P(Xs =5 |Y = j) = argmax; 7; Hﬁ;s
s=1 s=1
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Bayes classifiers

MATLAB function for naive Bayes

% fit a Gaussian naive Bayes classifier

md| = fitcnb(trainData, trainLabels, 'DistributionNames’, ‘normal’)
% fit a naive Bayes classifier with kernel smoothing

mdl = fitcnb(trainData, trainLabels, ’DistributionNames’, ‘kernel’)
% fit a multinomial naive Bayes classifier

mdl = fitcnb(trainData, trainLabels, 'DistributionNames’, ‘mn’)
% fit a multivaraite multinomial naive Bayes classifier

mdl = fitcnb(trainData, trainLabels, 'DistributionNames’, ‘mvmn’)

% classify new data
pred = predict(mdl, testData)
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Bayes classifiers

Python scripts for naive Bayes
See

https://scikit-learn.org/stable/modules/classes.html\#module-sklearn.naive_bayes

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 48/51



Bayes classifiers

Summary

e Bayes decision rule

J = argmax; P(Y =j | x)

e Examples of Bayes classifiers
— QDA: multivariate Gaussians
— LDA: multivariate Gaussians with equal covariance

— Naive Bayes: independent features x1,...,xq
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Bayes classifiers

Assignment 3

1. Use PCA with each value of s = spin (80%) : Smax (95%) to
project the Fashion-MNIST data set (both training and test) into an
s-dimensional space and then apply each of the following classifiers
to classify the test data. Plot the test accurate rates for all the four
methods as functions of s in one figure and discuss your results.

e LDA
e QDA
e Gaussian Naive Bayes

e Naive Bayes with kernel smoothing
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Bayes classifiers

2. Apply the multinomial naive Bayes classifier to the 20newsgroups
data (bydate version) available at http://qwone.com/~jason/
20Newsgroups/. Discuss your results.
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