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• A probabilistic model for classification

• Bayes classification rule

• Examples of Bayes classifiers

– Discriminant Analysis: LDA, QDA

– Naive Bayes: Gaussian, Bernoulli, Multinomial, Multivariate
multinomial

• Assignment 3



Bayes classifiers

Recall the statistical perspective of classifcation

Let ~X ∈ Rd, Y ∈ R be two random variables representing the location and
label of a data point to be observed. Suppose they have a joint distribution
f ~X,Y , and marginal distributions f ~X (continuous) and fY (discrete).

The training data can be modeled by a random sample from the joint
distribution:

( ~X1, Y1), . . . , ( ~Xn, Yn) iid∼ f ~X,Y

The test data (without labels) is an independent sample from the marginal
distribution of ~X:

~Xn+1, . . . , ~Xn+m
iid∼ f ~X
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Bayes classifiers

Joint distribution Sampling
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The problem of classification is thus to predict the value of the label Y
for each of the test point locations ~Xn+j , 1 ≤ j ≤ m.
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Bayes classifiers

How to classify a new sample naively
Let the range of Y be {1, 2, . . . , c}, with probabilities

P (Y = j) = πj , 1 ≤ j ≤ c.

We call πj a prior probability, i.e., the probability that a new point belongs
to class j before it is seen (i.e., the value of ~X has not been observed).

A naive way would be to assign any new data point to the class with the
largest prior probability

ĵ = argmaxj πj

This method makes a constant prediction (i.e., the most frequent value of
Y ) with test error rate 1− πĵ .
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Bayes classifiers

We don’t know the true values of πj , so we’ll estimate them using a
random sample from the joint distribution:

( ~X1, Y1), . . . , ( ~Xn, Yn) iid∼ f ~X,Y .

Let the count of the observations in the above sample that come from
class j be

Nj =
n∑
i=1

I(Yi = j), 1 ≤ j ≤ c

Then

E(Nj) =
n∑
i=1

E[I(Yi = j)] =
n∑
i=1

(1 · πj + 0 · (1− πj)) = nπj

This shows that Nj/n is an unbiased estimator of πj .
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Bayes classifiers

When given a specific training data set:

(x1, y1), . . . , (xn, yn),

a point estimate of πj is thus

π̂j = nj
n
, ∀ j = 1, . . . , c

where nj is the actual number of training points from Cj :

nj =
n∑
i=1

I(yi = j), 1 ≤ j ≤ c
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Bayes classifiers

Bayes classification rule
Given a new data point x, a better way is to assign the label based on the
largest posterior probability:

ĵ = argmaxj P (Y = j | ~X = x)←− generic Bayes classifier

The Bayes classifier is optimal with Bayes error rate

1− E ~X

(
max

1≤j≤c
P (Y = j | ~X)

)
This is the lowest possible test error rate that may be achieved by a
classifier.
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Bayes classifiers

Remark. Recall that kNN is also a Bayes classifier (but it is nonparametric):

P (Y = j | ~X = x) ≈ #nearest neighbors from class j
#all nearest neighbors examined
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Bayes classifiers

Model-based Bayes classification

Suppose that for each j = 1, . . . , c,

f(x | Y = j) = fj(x).

The joint distribution of ~X and Y is

f ~X,Y (x, Y = j) = f(x | Y = j)P (Y = j)

= fj(x)πj

and the marginal density of ~X is

f ~X(x) =
∑
j

f ~X,Y (x, Y = j) =
∑
j

πjfj(x)

f1(x)

f2(x)

f3(x)
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Bayes classifiers

According to Bayes’ rule, the posterior probabilities are given by

P (Y = j | ~X = x) = f(x | Y = j) · P (Y = j)
f(x) ∝ fj(x)πj

Therefore, the Bayes classification rule can be stated as

ĵ = argmaxj fj(x)︸ ︷︷ ︸
likelihood

· πj︸︷︷︸
prior prob

←− model-based Bayes classifier

f1(x)

f2(x)

f3(x)

b
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Bayes classifiers

Estimating class-conditional probabilities fj(x)
We need to select a template (i.e., model) for each component first.

Different kinds of fj(x) lead to different Bayes classifiers:

• LDA/QDA - multivariate Gaussian distributions

fj(x) = 1
(2π)d/2|Σj |1/2 e

− 1
2 (x−µj)TΣ−1

j (x−µj), j = 1, . . . , c

• Naive Bayes - by assuming independent features in x = (x1, . . . , xd):

fj(x) =
d∏

k=1
fjk(xk)←− 1D distributions to be specified
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Bayes classifiers

What are multivariate Gaussians?
Briefly speaking, they are generalizations of the 1D Gaussian distribution

f(x) = 1√
2πσ2

e−
(x−µ)2

2σ2

to higher dimensions:

f(x) = 1
(2π)d/2|Σ|1/2 e

− 1
2 (x−µ)TΣ−1(x−µ), ∀ x ∈ Rd

Remark. If Σ = σ2I (i.e., constant diagonal), then the above formula
reduces to

f(x) = 1
(2πσ2)d/2 e

− ‖x−µ‖2

2σ2 , ∀ x ∈ Rd
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Bayes classifiers

In the pdf of a multivariate Gaussian,

• µ ∈ Rd: center of the distribution

• Σ ∈ Rd×d: covariance matrix
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Bayes classifiers

The Bivariate normal (d = 2)

Write
x =

(
x1
x2

)
, µ =

(
µ1
µ2

)
, Σ =

(
σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

)
The joint density is

f(x1, x2) = 1
2πσ1σ2

√
1− ρ2

·

exp
(
− 1

2(1− ρ2)

[
(x1 − µ1)2

σ2
1

+ (x2 − µ2)2

σ2
2

− 2ρ(x1 − µ1)(x2 − µ2)
σ1σ2

])
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Bayes classifiers

Marginals of the bivariate normal are 1D normal distributions: N(µi, σ2
i )
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Bayes classifiers

Bayes classification with multivariate Gaussians
Under such a mixture of Gaussians model,

fj(x) = 1
(2π)d/2|Σj |1/2 e

− 1
2 (x−µj)TΣ−1

j (x−µj), ∀ j = 1, . . . , c

the Bayes classification rule (for a new data point x)

ĵ = argmaxj fj(x)πj

becomes the following:

ĵ = argmaxj
1

(2π)d/2|Σj |1/2 e
− 1

2 (x−µj)TΣ−1
j (x−µj) · πj

= argmaxj log πj −
1
2 log |Σj | −

1
2(x− µj)TΣ−1

j (x− µj)
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Bayes classifiers

Example 0.1. Let’s consider the special case of two 1D Gaussians:

b b

µ1 µ2

σ1 σ2

bb b bb bb b b b bb b b

Suppose we know the true values of µ1, µ2, σ1, σ2. The corresponding
Bayes decision rule is

ĵ = argmaxj log πj −
1
2 log(σ2

j )−
(x− µj)2

2σ2
j
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Bayes classifiers

Remark.

• If π1 = π2 and σ1 = σ2, then the rule will assign x to the closer
mean µj (larger πj will favor the class further).

• The boundary point can be found by solving the following (quadratic)
equation

log π1 −
1
2 log(σ2

1)− (x− µ1)2

2σ2
1

= log π2 −
1
2 log(σ2

2)− (x− µ2)2

2σ2
2

To simplify the math, we assume that the two components have
equal variance (i.e., σ1 = σ2 = σ), in which case we obtain

x = µ1 + µ2
2 + σ2 log(π1/π2)

µ2 − µ1

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 19/51



Bayes classifiers

Quadratic Discriminant Analysis (QDA)
The decision boundary of a classifier consists of points that have a tie.

For the Bayes classification rule based on a mixture of Gaussians model,
the decision boundaries are given by

log πj −
1
2 log |Σj | −

1
2(x− µj)TΣ−1

j (x− µj)

= log π` −
1
2 log |Σ`| −

1
2(x− µ`)TΣ−1

` (x− µ`)

This shows that such a Bayes classifier has quadratic boundaries (between
each pair of training classes), and is thus called Quadratic Discriminant
Analysis (QDA).
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Bayes classifiers

Parameter estimation for QDA
The QDA classifier

ĵ = argmaxj log πj −
1
2 log |Σj | −

1
2(x− µj)TΣ−1

j (x− µj)

depends on the model parameters πj ,µj ,Σj but their true values are
typically unknown.

Given training data, we estimate them as follows:

π̂j = nj
n
, µ̂j = 1

nj

∑
x∈Cj

x, Σ̂j = 1
nj − 1

∑
x∈Cj

(x− µ̂j)(x− µ̂j)T
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Bayes classifiers

LDA (left) and QDA (right)
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Bayes classifiers

Linear Discriminant Analysis (LDA)
In QDA we assume that the component distributions are all multivariate
Gaussians but allow them to have separate means µj and covariances Σj .

However, these are a lot of parameters to be estimated from the training
data (especially when the dimension is large).

There is also a risk of overfitting the data.

To ease the computational burden, we assume that all the components
have the same covariance

Σ1 = · · · = Σc = Σ
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Bayes classifiers

In this special setting, the Bayes classification rule becomes

ĵ = argmaxj log πj −
1
2(x− µj)TΣ−1(x− µj)

= argmaxj xTΣ−1µj −
1
2µT

j Σ−1µj + log πj .

The corresponding decision boundary is

xTΣ−1µj −
1
2µT

j Σ−1µj + log πj = xTΣ−1µ` −
1
2µT

` Σ−1µ` + log π`

which simplifies to

xTΣ−1(µj − µ`) = 1
2
(
µT
j Σ−1µj − µT

` Σ−1µ`

)
+ log π`

πj

This is a hyperplane with normal vector Σ−1(µj − µ`).
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Bayes classifiers

Parameter estimation for LDA
Similarly, we can use the training data to estimate the parameters πj ,µj

as follows:

π̂j = nj
n
, µ̂j = 1

nj

∑
x∈Cj

x

For the shared covariance matrix Σ, we use the following pooled estimator:

Σ̂ = 1
n− c

c∑
j=1

∑
x∈Cj

(x− µ̂j)(x− µ̂j)T

This leads to the following practical LDA classifier:

ĵ = argmaxj xT Σ̂−1µ̂j −
1
2 µ̂T

j Σ̂−1µ̂j + log π̂j .
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Bayes classifiers

When statistics meets optimization
We have introduced LDA both as a supervised dimensionality reduction
method and as a Bayes classifier. This is not a conflict in name.

In the two-class setting,

• As a classifier, the LDA decision boundary is a hyperplane with
normal vector Σ̂−1(µ̂1 − µ̂2).

• As a dimensionality reduction technique, LDA projects the data onto
the following direction

v = S−1
w (m1 −m2)
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Bayes classifiers

It turns out that the two vectors are the same:

Sw =
2∑
j=1

∑
x∈Cj

(x−mj)(x−mj)T = (n− 2)Σ̂

m1 = µ̂1

m2 = µ̂2

This shows that the two LDAs are indeed the same thing.

Therefore, we can combine both perspectives to fully understand LDA (see
next slide).
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Bayes classifiers

Remark. LDA

• is a linear classifier (which clas-
sifies data using a hyperplane)

• uses a mixture of Gaussians
model (with equal covariance)

• is a Bayes classifier

• projects data onto the most
discriminative direction

• is also applicable to data from
other distributions

v
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Bayes classifiers

MATLAB implementation of LDA/QDA
% fit a discriminant analysis classifier

mdl = fitcdiscr(trainData, trainLabels, ’DiscrimType’, type)

% where type is one of the following:

• ‘Linear’ (default): LDA

• ‘Quadratic’: QDA

% classify new data

pred = predict(mdl, testData)
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Bayes classifiers

Python scripts for LDA/QDA

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

#from sklearn.discriminant_analysis import QuadraticDiscriminant-
Analysis

lda = LinearDiscriminantAnalysis()

pred = lda.fit(trainData,trainLabels).predict(testData)

print("Number of mislabeled points: %d" %(testLabels !=
pred).sum())
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Bayes classifiers

The singularity issue in LDA/QDA
Both LDA and QDA require inverting covariance matrices, which may be
(nearly) singular in the case of high dimensional data.

Common fixes:

• Apply PCA to reduce dimensionality first, or

• Regularize the covariance matrices, or

• Use psuedoinverse: ’pseudoLinear’, ’pseudoQuadratic’:

(Sw)† = (QΛQT )† = QΛ†QT , Λ†ii =


1
λ i
, λi > 0

0, λi = 0
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Bayes classifiers

LDA/QDA on the MNIST

See poster at

https://www.sjsu.edu/faculty/guangliang.chen/Math285S16/poster-DA.pdf

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 32/51



Bayes classifiers

Naive Bayes
The naive Bayes classifier is also based on the Bayes decision rule:

ĵ = argmaxj fj(x)πj
Unlike Discriminant Analysis (LDA/QDA) which assumes that ~X, when
conditioned on Y = j, follows a multivariate Gaussian distribution fj(x),
Naive Bayes assumes that the individual components of ~X = (X1, . . . Xd)
are conditionally independent given a class Y = j:

fj(x) = f ~X(x | Y = j) =
d∏
s=1

fXs(xs | Y = j) =
d∏
s=1

fsj(xs).

This thus reduces the high dimensional density estimation problem ({fj(x)}j)
to a union of simple 1D problems ({fsj(xs)}j,s).
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Bayes classifiers

Depending on the data types and the corresponding models used for the
component density functions {fsj(xs)}j,s, the naive Bayes classifier has
different versions:

• Continuous data: Gaussian naive Bayes

• Binary/Boolean data: Bernoulli naive Bayes

• Frequency/count data: Multinomial naive Bayes

• Categorical/discrete data: multivariate multinomial naive Bayes
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Bayes classifiers

Gaussian naive Bayes

For continuous features (e.g., image data), the standard choice for modeling
{fsj(xs)}j,s is the 1D normal distribution:

fsj(xs) = 1√
2πσsj

e−(xs−µsj)2/2σ2
sj

where µsj , σsj can be estimated similarly using the training data (in every
class j and in every dimension s).

The resulting classification rule for a new data point x = (x1, . . . , xd)′ is

ĵ = argmaxj log π̂j −
d∑
s=1

[
log σ̂sj + (xs − µ̂sj)2/2σ̂2

sj

]
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Bayes classifiers

Gaussian naive Bayes can be used to classify digital images (such as the
MNIST handwritten digits).

In this case, each pixel is a feature, and their intensities are assumed to
be independent random variables.

b b bb

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 36/51



Bayes classifiers

Improving Gaussain naive Bayes

1. Independence assumption: Ap-
ply PCA to obtain uncorrelated
features (closer to being indepen-
dent) and meanwhile get rid of
low-variance dimensions

2. Choice of distribution: Use ker-
nel smoothing instead of Gaussian
to better model feature distributions
However, this will be at the expense
of speed.
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Bayes classifiers

Bernoulli naive Bayes

For binary features (i.e., 0/1 valued), we can use the Bernoulli distribution
to modeling them:

fsj(xs) = pxssj (1− psj)1−xs , xs = 0, 1

where psj is the probability of Xs taking the value of 1 within class j.
Similarly, it can be estimated using the training data.

The resulting classification rule for a new data point x = (x1, . . . , xd)′ is

ĵ = argmaxj log π̂j +
d∑
s=1

[xs log p̂sj + (1− xs) log(1− p̂sj)]
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Bayes classifiers

Remark. Bernoulli naive Bayes is a linear classifier, because for each j,

log π̂j +
d∑
s=1

[xs log p̂sj + (1− xs) log(1− p̂sj)]

= log π̂j +
d∑
s=1

[
xs log p̂sj

1− p̂sj
+ log(1− p̂sj)

]
=wT

j · x + bj

where

wj =
(

log p̂1j
1− p̂1j

, . . . , log p̂dj
1− p̂dj

)T
, bj = log π̂j +

d∑
s=1

log(1− p̂sj)
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Bayes classifiers

Remark. Bernoulli naive Bayes is popular for document classification tasks
where binary term occurrence features are used (1 if the term occurs in
the document, 0 otherwise).

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 40/51



Bayes classifiers

Multinomial naive Bayes

This Bayes classifier is very useful for modeling count data, such as the
bag-of-words model for text documents.
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Bayes classifiers

To classify text documents, multinomial naive Bayes assumes that each
document is a collection of frequency counts

~X = (X1, X2, . . . , Xd)

of terms that are randomly and independently selected from a vocabulary
of size d according to a multinomial distribution at the class level:

fj(x) = f ~X|Y (x | Y = j) = (
∑
xs)!∏
xs!

d∏
s=1

pxssj , for all x1, . . . , xs ≥ 0

where j is fixed and

psj ≥ 0, for each 1 ≤ s ≤ d, and
∑

psj = 1

are the probabilities of generating terms from a fixed topic.
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Bayes classifiers

It can be shown that the MLE of psj based on the jth training class is

p̂sj =

nj∑
i=1

x
(i)
s

d∑
s=1

nj∑
i=1

x
(i)
s

Laplace−−−−−−→
smoothing

1 +
nj∑
i=1

x
(i)
s

d+
d∑
s=1

nj∑
i=1

x
(i)
s

where x(i)
s is the (observed) frequency of word s in the ith document of

class j and

•
nj∑
i=1

x
(i)
s : word count of sth term over all documents in class j

•
d∑
s=1

nj∑
i=1

x
(i)
s : total word count of class j
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Bayes classifiers

The resulting classification rule for a new data point x = (x1, . . . , xd)′ is

ĵ = argmaxj π̂jfj(x)

= argmaxj log π̂j +
d∑
s=1

xs log p̂sj

= argmaxj wT
j · x + bj

where
wj = (log p̂1j , . . . , log p̂dj)T , bj = log π̂j .

This shows that like Bernoulli naive Bayes, multinomial naive Bayes is also
a linear classifier.
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Bayes classifiers

Comments on multinomial naive Bayes1

Overall, naive Bayes is not naive!

• Very fast, low storage requirements

• Robust to irrelevant features

• Very good in domains with many equally important features

• Optimal Bayes classifier if the independence assumptions hold

• A good dependable baseline for text classification
1https://web.stanford.edu/~jurafsky/slp3/slides/7_NB.pdf
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Bayes classifiers

Multivariate multinomial naive Bayes

For categorical features ~X = (X1, . . . , Xd), they are assumed to be
independent. We then fit a joint model for them within each class.

Suppose Xs has L distinct levels, which occur in class j with probabilities

P (Xs = ` | Y = j) = p
(`)
sj , ` = 1, . . . , L

It can be shown that the MLE of p(`)
sj is the observed fraction of level ` of

Xs in class j. Then for a data point x = (x1, . . . , xd)′, the decision rule is

ĵ = argmaxj π̂j
d∏
s=1

P (Xs = xs | Y = j) = argmaxj π̂j
d∏
s=1

p̂
(xs)
sj
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Bayes classifiers

MATLAB function for naive Bayes
% fit a Gaussian naive Bayes classifier
mdl = fitcnb(trainData, trainLabels, ’DistributionNames’, ‘normal’)
% fit a naive Bayes classifier with kernel smoothing
mdl = fitcnb(trainData, trainLabels, ’DistributionNames’, ‘kernel’)
% fit a multinomial naive Bayes classifier
mdl = fitcnb(trainData, trainLabels, ’DistributionNames’, ‘mn’)
% fit a multivaraite multinomial naive Bayes classifier
mdl = fitcnb(trainData, trainLabels, ’DistributionNames’, ‘mvmn’)

% classify new data
pred = predict(mdl, testData)
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Bayes classifiers

Python scripts for naive Bayes

See

https://scikit-learn.org/stable/modules/classes.html\#module-sklearn.naive_bayes
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Bayes classifiers

Summary
• Bayes decision rule

ĵ = argmaxj P (Y = j | x)

• Examples of Bayes classifiers

– QDA: multivariate Gaussians

– LDA: multivariate Gaussians with equal covariance

– Naive Bayes: independent features x1, . . . , xd
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Bayes classifiers

Assignment 3
1. Use PCA with each value of s = smin (80%) : smax (95%) to

project the Fashion-MNIST data set (both training and test) into an
s-dimensional space and then apply each of the following classifiers
to classify the test data. Plot the test accurate rates for all the four
methods as functions of s in one figure and discuss your results.

• LDA

• QDA

• Gaussian Naive Bayes

• Naive Bayes with kernel smoothing
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Bayes classifiers

2. Apply the multinomial naive Bayes classifier to the 20newsgroups
data (bydate version) available at http://qwone.com/~jason/
20Newsgroups/. Discuss your results.
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