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– Boosting (AdaBoost, LogitBoost)
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Classification trees and ensemble learning

Main references
• “Trees, Bagging, Random Forests and Boosting”, lecture slides by
Trevor Hastie of Stanford University1

• “Trees and Random Forests”, lecture slides by Adele Cutler of Utah
State University2

• “Boosting”, lecture notes by Kilian Weinberger of Cornell University3

• Chapter 8 of Textbook 1

1http://jessica2.msri.org/attachments/10778/10778-boost.pdf
2http://www.math.usu.edu/adele/randomforests/uofu2013.pdf
3https://www.cs.cornell.edu/courses/cs4780/2021fa/lectures/lecturenote19.html
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Classification trees and ensemble learning

What is a classification tree?

• A series of binary splits based on
training data.

• Each internal node represents a
query on one of the variables.

• The terminal/leaf nodes are the
decision nodes, typically domi-
nated by one of the classes.

• New observations are classified
in the respective terminal nodes
through majority vote.
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Classification trees and ensemble learning

Splitting criterion: Gini impurity score

Optimal splitting in each code is
found by minimizing the Gini di-
versity index over all possible splits
(variable + cutoff):

n(L)
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(L)
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• n(L) (n(R)): #training exam-
ples in left (right) node

• p
(L)
i (p(R)

i ): proportion of
class i in left (right) node
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Classification trees and ensemble learning

Demo: Building a classification tree
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Classification trees and ensemble learning
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Classification trees and ensemble learning
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Classification trees and ensemble learning
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Classification trees and ensemble learning
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Classification trees and ensemble learning
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Classification trees and ensemble learning
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Classification trees and ensemble learning

MATLAB function (with default values)

mdl = fitctree(trainX, trainLabels,

‘MinParentSize’, 10,

‘MinLeafSize’ , 1,

‘MaxNumSplits’ , n− 1,

‘NumVariablesToSample’ , ‘all’)

view(mdl, ’mode’, ’graph’) % to visualize the tree

pred = predict(mdl, Xtst);
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Classification trees and ensemble learning

Demonstration
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Classification trees and ensemble learning

Remark. Classification trees, though easy to build, are considered as weak
learners:

• The decision boundary is piecewise linear

• Unstable (if we change the data a little, the tree may change a lot)

• Prediction performance is often poor (due to high variance)
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Classification trees and ensemble learning

Advantages of classification trees

• No distribution assumptions (non-parametric)

• Works in the same way in multiclass settings

• Can handle large data sets

• Can handle categorical variables naturally

• Can deal with missing values elegantly
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Classification trees and ensemble learning

Ensemble methods
Ensemble methods train many weak classifiers (e.g., trees) and combine
their predictions to enhance the performance of a single weak learner:

Tree 1 Tree 2 Tree T

b b b
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Classification trees and ensemble learning

To be covered in this course:

• Bagging (Bootstrap AGGregatING): build many trees indepen-
dently from different bootstrap samples of the training data and
then vote their predictions to get a final prediction

• Random Forest: a variant of bagging by allowing to use different
subsets of variables at the nodes of any tree in the ensemble

• Boosting: build many trees adaptively and then add their predictions

– AdaBoost (Adaptive Boosting)

– GradientBoost (Gradient boosting)
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Classification trees and ensemble learning

Bagging
To build a classification tree on each separate bootstrap sample of the
training data, i.e., a random sample with replacement, and then use
majority vote.

x1,x2, . . . ,xn

x1,x2,x2,x5, . . . ,xn

x3,x4,x4. . . . ,xn,xn

x1,x1,x1,x3,x7, . . .

b

b

b

CT T

CT 2

CT 1

Training Data Bootstrap Samples Classification Trees

Majority
Votingb

b

b

Test Data
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Classification trees and ensemble learning

Remark.

• “Averaging” many trees decreases the variance of the model, without
increasing the bias (as long as the trees are not correlated)

• Bootstrap sampling is a way of de-correlating the trees (as simply
training many trees on a single training set would give strongly
correlated trees).

• The number of bootstrap samples/trees, T , is a free parameter. Typ-
ically, a few hundred to several thousand trees are used, depending
on the size and nature of the training set.
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Classification trees and ensemble learning

Out-of-bag (oob)

It turns out that drawing n out of n
observations with replacement omits
on average 36.8% of observations
for each tree:

(
1− 1

n

)n
≈ 1
e

= 0.3678794

We say that those samples left out
by a tree are out-of-bag (oob) with
respect to that tree.
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Classification trees and ensemble learning

Out-of-bag error
For each training example (xi, yi), we may vote the predictions of all the
oob trees to obtain an estimate of the true label yi, denoted as ŷ(oob)

i .
The overall oob error is computed as follows:

e(oob)(T ) =
n∑
i=1

1
yi 6=ŷ(oob)

i

Such measure is an unbiased estimator of the true ensemble error and
it does not require an independent validation dataset for evaluating the
predictive power of the model.

An optimal value of T can be found by observing the out-of-bag error.
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Classification trees and ensemble learning

OOB and test errors of bagging on the usps data set
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Classification trees and ensemble learning

MATLAB function for bagging

% Train T trees and make oob predictions in the meantime
TB = TreeBagger(T, Xtr, ytr, ’OOBPrediction’, ’on’, ’NumPre-
dictorsToSample’, ’all’, ’MinLeafSize’, 1);

% Plot out-of-bag errors
figure; plot(oobError(TB))

pred = predict(TB, testX); % make prediction
pred = cellfun(@str2num, pred); % convert string cell output to
vector
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Classification trees and ensemble learning

Random forest

Random forests improve bagging by allowing every tree in the ensemble to
randomly select predictors for each of its nodes. This process is sometimes
called “feature bagging”.

The motivation is to further de-correlate the trees in bagging: If one or a
few features are very strong predictors for the class label, these features
will be selected in many of the trees, causing them to become correlated.

Typically, for a classification problem with d features,
√
d features (selected

at random) are used in each split.
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Classification trees and ensemble learning
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Classification trees and ensemble learning

MATLAB function for random forest

% Train T trees with feature bagging (s) + oob prediction
TB = TreeBagger(T, Xtr, ytr, ’OOBPrediction’, ’on’, ’NumPre-
dictorsToSample’, s, ’MinLeafSize’, 1);
% Default value of ’NumPredictorsToSample’ =

√
d, so it is already

random forest unless you set s = ‘all’

figure; plot(oobError(TB))

pred = predict(TB, testX);
pred = cellfun(@str2num, pred); % convert string cell to vector
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Classification trees and ensemble learning

OOB and test errors of random forest on the usps data set
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Classification trees and ensemble learning

Python function for random forest

See documentation at

http://scikit-learn.org/stable/modules/generated/
sklearn.ensemble.RandomForestClassifier.html
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Classification trees and ensemble learning

AdaBoost (Adaptive Boosting)
Main idea: Build tree classifiers sequentially by“ focusing more attention”
on training errors made by the preceding trees.

Tree 1 Tree 2 Tree T

b b bequal weight weights {w(1)
i }

Empty tree

weights {w(2)
i }

One way to realize this idea is to use the output of the current ensemble
to reweight the training data for the next tree.
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Classification trees and ensemble learning

Demo: an ensemble of 3 boosted trees
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Classification trees and ensemble learning

How to choose weights

Initially, all training examples have an equal weight, i.e., w(0)
i = 1

n ,∀ i.

For each t = 1 : T , do the following sequentially:

• Fit a tree classifier Ct(x) to the training data using weights w(t−1)
i

from previous iteration

• Compute the weighted error of Ct(x):

εt =
n∑
i=1

w
(t−1)
i Iyi 6=Ct(xi)
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Classification trees and ensemble learning

• Set αt = 1
2 log 1−εt

εt
, which is weight to be assigned to Ct

• Modify the weights of the training data points as follows:

w
(t)
i = w

(t−1)
i · e−αtyiCt(xi) =

w
(t−1)
i e−αt , Ct(xi) = yi

w
(t−1)
i eαt , Ct(xi) 6= yi

• Re-normalize the new weights w(t)
i to have a sum of 1 for the next

iteration.

Remark. The classifier in the procedure does not need to be a decision
tree (they can be kNN, or logistic regression instead)
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Classification trees and ensemble learning

How to use weights

Consider a weighted training set (xi, yi, w(t)
i ), 1 ≤ i ≤ n, t ≥ 0. In all

calculations (wherever used), every training point xi will count as “w(t)
i

points”.

For example, when computing the Gini impurity for a candidate split

n(L)
k∑
j=1

p
(L)
j (1− p(L)

j ) + n(R)
k∑
j=1

p
(R)
j (1− p(R)

j )

we will use instead

n(L) =
∑

i∈ left node
w

(t)
i and p

(L)
j = 1

n(L)

∑
i∈ (class j ∩ left node)

w
(t)
i
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Classification trees and ensemble learning

How to combine the trees
Classifying a test point x0 is through voting with weights

αt = 1
2 log 1− εt

εt

for the different trees:

ŷ0 = argmaxj
∑

t :Ct(x0)=j
αt

Remark. For binary classification with labels yi = ±1, the above decision
rule can be written as

ŷ0 = sgn
(

T∑
t=1

αtCt(x0)
)
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Classification trees and ensemble learning

Test errors of bagging, random forest, and AdaBoost on the usps data set
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Classification trees and ensemble learning

Mathematical interpretation of AdaBoost

AdaBoost is a member of the gradi-
ent boosting family of classifiers. It
uses the exponential loss.

In the setting of binary labels, i.e.,
y = ±1, let f be a binary classifier
or a continuous function.

The exponential loss of f at a given
location x is

`(y, ŷ) = e−yŷ, ŷ = f(x).

3 loss functions when y = 1:
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Classification trees and ensemble learning

The total loss of f on a training set {(xi, yi)}1≤i≤n, where yi = ±1, is

`n(f) =
n∑
i=1

`(yi, ŷi) =
n∑
i=1

e−yiŷi , ŷi = f(xi)

It is an estimate of the expected loss at a random location ( ~X, Y ):

E(`(Y, f( ~X))) = E
(
e−Y f( ~X)

)
← 1

n
`n(f)

It can be shown that the minimizer of this loss is

arg min
f

E
(
e−Y f( ~X)

)
→ f( ~X) = 1

2 log P (Y = 1 | ~X)
P (Y = −1 | ~X)

To see this, write

E
(
e−Y f( ~X)

)
= E ~X

[
EY

(
e−Y f( ~X) | ~X

)]
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Classification trees and ensemble learning

Next,

EY
(
e−Y f( ~X) | ~X = x

)
= EY

(
e−Y f(x) | x

)
= e−f(x)P (Y = 1 | x) + ef(x)P (Y = −1 | x).

Differentiating this with respect to f(x) and setting it to zero gives that

−e−f(x)P (Y = 1 | x) + ef(x)P (Y = −1 | x) = 0

The solution of the equation (in f(x)) is

f(x) = 1
2 log P (Y = 1 | x)

P (Y = −1 | x)

This shows that the minimizer of the expected exponential loss is half of
the log-odds function at each location.
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Classification trees and ensemble learning

Mathematical derivation of AdaBoost
Recall that the decision rule of the AdaBoost classifier is

y0 = sgn(f(x0)), f(x0) =
T∑
t=1

αtht(x0)

where ht is the classification tree built in iteration t, with weight αt.

The decision function f(x) is trained iteratively using gradient descent,
based on the exponential loss. The procedure is outlined next.

Suppose H = Ht is the current ensemble learner (at iteration t),

H(x) =
t∑

j=1
αjhj(x), x ∈ Rd
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Classification trees and ensemble learning

The loss of H on the training data is

`n(H) =
n∑
i=1

` (yi, H(xi)) =
n∑
i=1

e−yiH(xi)

which can be regarded as a function of (H(x1), . . . ,H(xn)).

bb

b

b
b

b

b

b
b

bb b
b

bb
y = H(x)

x3x1x2xn
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Classification trees and ensemble learning

In the next iteration, we want to add one more weak learner h = ht+1 of
the same kind, with weight α = αt+1, so that the new ensemble learner
H + αh will improve H in terms of the total loss, i.e.,

`n(H + αh) < `n(H)

To choose h and α cleverly, we need to compute the gradient of `n(H)
with respect to (H(x1), . . . ,H(xn)), i.e.,

∂`n(H)
∂H

≡ ∇`n(H) =
(
∂`n(H)
∂H(x1) , . . . ,

∂`n(H)
∂H(xn)

)
,

in order to carry out gradient descent in the functional space.
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Classification trees and ensemble learning

Gradient boosting in general

Assumption: Suppose that we are given

• a space H of weak learners (e.g., classification trees) that have large
bias and high training error, and

• a convex and differentiable loss function `.

Question (Kearns, 1988): Can weak learners from H be combined to
generate a strong learner with low bias?

Answer (Schapire, 1990): Yes
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Classification trees and ensemble learning

Solution: Create an ensemble learner iteratively:

f(x) =
T∑
t=1

αtht(x), αt ∈ R, ht ∈ H

That is, letting

H =
t∑

j=1
αjhj(x)

be the current ensemble learner (after t iterations), we want to add in
iteration t + 1 one more weak learner h (with certain weight α) to the
ensemble as follows:

min
h∈H

`n(H + αh)

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 44/68



Classification trees and ensemble learning

However, it may be too difficult to exactly solve the minimization problem.

So we instead seek a weak learner h ∈ H to simply reduce the loss a bit,
i.e.,

`n(H + αh) < `n(H)

If α is sufficiently small, then using Taylor’s expansion we get

`n(H + αh) ≈ `n(H) + α〈∇`n(H), h〉

Thus, to decrease the loss, we just need to select h such that

〈∇`n(H), h〉 < 0
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Classification trees and ensemble learning

or equivalently,
n∑
i=1

∂`n(H)
∂H(xi)

h(xi) < 0

Letting
ri = ∂`n(H)

∂H(xi)
,

this condition can be rewritten as
n∑
i=1

ri h(xi) < 0.

Note that the choice of h does not need to be great. As long as the sum
is negative, h would work.
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Classification trees and ensemble learning

Back to AdaBoost

Recall the setting:

• Binary labels: yi = ±1, i = 1, . . . , n

• Weak learners: H = space of binary classification trees, h(x) = ±1

• Exponential loss function:

`n(H) =
n∑
i=1

e−yiH(xi)

where H is the current ensemble learner at iteration t.

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 47/68



Classification trees and ensemble learning

To find the next weaker learner h ∈ H, we compute the components of
the gradient ∇`n(H):

ri = ∂`n(H)
∂H(xi)

= −yie−yiH(xi)

Denote
wi = 1

Z
e−yiH(xi), 1 ≤ i ≤ n

where
Z =

n∑
i=1

e−yiH(xi) = `n(H) such that
n∑
i=1

wi = 1

It follows that
ri = −yiwiZ.
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Classification trees and ensemble learning

Now,

n∑
i=1

ri h(xi) = −Z
n∑
i=1

wiyih(xi) = −Z

 ∑
h(xi)=yi

wi −
∑

h(xi)6=yi

wi


= −Z

1− 2
∑

h(xi)6=yi

wi

 = Z

2
∑

h(xi) 6=yi

wi − 1


In order to make progress (i.e.,

∑n
i=1 ri h(xi) < 0), we just need the

new weak learner h to achieve a weighted classification error (better than
random guessing):

ε =
∑

h(xi) 6=yi

wi < 0.5
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Classification trees and ensemble learning

After we have found the new weak leaner h achieving ε < 0.5, we can
select the optimal step size α as follows:

min
α
`n(H + αh)

Write

`n(H + αh) =
n∑
i=1

e−yi[H(xi)+αh(xi)] = Z
n∑
i=1

wie
−αyih(xi)

= Z

 ∑
h(xi)=yi

wie
−α +

∑
h(xi)6=yi

wie
α


= Z

[
e−α(1− ε) + eαε

]
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Classification trees and ensemble learning

Differentiating it with respect to α and setting it equal to zero gives that

0 = Z
[
−e−α(1− ε) + eαε

]
The solution is

α = 1
2 log 1− ε

ε

Lastly, after obtaining the new ensemble learner H + αh, we need to
re-compute and re-normalize the weights:

w′i = e−yi[H(xi)+αh(xi)] = wie
−αyih(xi) =

wie−α, h(xi) = yi

wie
α, h(xi) 6= yi
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Classification trees and ensemble learning

The new normalizing constant is

Z ′ =
∑

h(xi)=yi

wie
−α +

∑
h(xi)6=yi

wie
α

= e−α(1− ε) + eαε

=
(1− ε

ε

)−1/2
(1− ε) +

(1− ε
ε

)1/2
ε

= 2
√
ε(1− ε).

Thus, the new normalized weights are

w′i = wie
−αyih(xi)

2
√
ε(1− ε)

=

wi ·
1

2(1−ε) , h(xi) = yi

wi · 1
2ε , h(xi) 6= yi
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Classification trees and ensemble learning

Some comments on AdaBoost
• Given any weak learner better than random guess (i.e., error rate
< 0.5), AdaBoost can achieve an arbitrarily high accuracy on the
training data.

• Fast convergence

• Excellent generalization performance

• Can handle many features easily

• In general, AdaBoost � random forest � bagging � single tree
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Classification trees and ensemble learning

LogitBoost (adaptive logistic regression)

AdaBoost is gradient boosting coupled with the exponential loss.

There are lots of other variants for gradient boosting such as LogitBoost
for binary classification with labels y = ±1.

It works similarly to AdaBoost, expect it minimizes binomial deviance, also
called log loss:

`(y, ŷ) = log
(
1 + e−2yŷ

)
where ŷ is the output of a classifier or continuous function.
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Classification trees and ensemble learning

When y = 1:
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Classification trees and ensemble learning

Why do the two loss functions (exponential and log) have so similar graphs?

This can be inferred from the Taylor series of log(1 + x):

log(1 + x) = x− 1
2x

2 + 1
3x

3 − · · ·

When x is close to 0, we have

log(1 + x) ≈ x

Thus, when the exponential loss e−yŷ is small, the log loss behaves like
the squared exponential loss:

log
(
1 + e−2yŷ

)
≈ e−2yŷ =

(
e−yŷ

)2
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On a training set {(xi, yi)}ni=1 where yi = ±1, the total log loss is

logLoss =
n∑
i=1

log
(
1 + e−2yiŷi

)
where ŷi = f(xi) are predictions by f (e.g., an ensemble learner).

It is an estimate of the expected log loss at a random location ( ~X, Y ):

E
[
log

(
1 + e−2Y f( ~X)

)]
← 1

n
logLoss

It can be similarly shown [homework] that the minimizer of this loss is

arg min
f

E
[
log

(
1 + e−2Y f( ~X)

)]
−→ f( ~X) = 1

2 log P (Y = 1 | ~X)
P (Y = −1 | ~X)
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When linear functions are used, i.e.,

f(xi) = 1
2θ · xi,

the log loss is in fact identical to the logistic loss for the logistic regression
model (with 0/1 labels):

logisticLoss =
n∑
i=1
−yi log p(xi; θ)− (1− yi) log(1− p(xi; θ))

where
p(xi; θ) = 1

1 + e−θ·xi
.
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Verify:

logisticLoss =
n∑
i=1
−yi log p(xi; θ)− (1− yi) log(1− p(xi; θ))

=
∑
i:yi=1

− log p(xi; θ) +
∑
i:yi=0

− log(1− p(xi; θ))

=
∑
i:yi=1

log(1 + exp(−θ · xi)) +
∑
i:yi=0

log(1 + exp(θ · xi))

=
∑
i:yi=1

log(1 + exp(−θ · xi)) +
∑

i:yi=−1
log(1 + exp(θ · xi))

=
n∑
i=1

log(1 + exp(−yiθ · xi)) ←− ŷi = 1
2θ · xi
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The process of training LogitBoost is very similar to that of AdaBoost, by
iteratively re-weighting the training data.

Assume a space H of weak learners (e.g., classification trees), and let the
current ensemble learner be

H(x) =
t∑

j=1
αjhj(x), hj ∈ H

with log loss:

`n(H) =
n∑
i=1

log
(
1 + e−2yiH(xi)

)
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To find the next weaker learner h ∈ H, we compute the components of
the gradient ∇`n(H):

ri = ∂`n(H)
∂H(xi)

= 1
1 + e−2yiH(xi)

e−2yiH(xi)(−2yi)

= −2yi
1

1 + e2yiH(xi)

= −wiyi

where
wi = 2

1 + e2yiH(xi)
, 1 ≤ i ≤ n

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 61/68



Classification trees and ensemble learning

The rest of the process is then the same:
n∑
i=1

ri h(xi) = −
n∑
i=1

wiyih(xi) = 2
∑

h(xi)6=yi

wi − 1.

In order to make progress (i.e.,
∑n
i=1 ri h(xi) < 0), we just need the new

weak learner h to achieve the following weighted error:

ε =
∑

h(xi) 6=yi

wi < 0.5
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MATLAB function for AdaBoost and LogitBoost

temp = templateTree(‘NumVariablesToSample’, ‘all’, ‘minleaf-
size’, 1, ‘MaxNumSplits’, 10);
mdl = fitcensemble(Xtr, ytr, ‘Method’, option, ‘NumLearning-
Cycles’, T, ‘Learners’, temp);
% Set option = ‘AdaBoostM1’ (2 classes), or ‘AdaBoostM2’ (> 2 classes),
% or ‘LogitBoost’, or ‘Bag’ (bagging, random forest)

% make predictions on test data
pred = predict(mdl, Xtst);
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Python functions for AdaBoost (and
GradientBoost)

AdaBoost4

GradientBoost5

4http://scikit-learn.org/stable/modules/generated/
sklearn.ensemble.AdaBoostClassifier.html

5https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
GradientBoostingClassifier.html
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Ensemble methods on the MNIST digits

See poster at

https://www.sjsu.edu/faculty/guangliang.chen/Math285S16/poster-Ensemble.pdf
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Summary
• Classification trees (weak learner)

• Ensemble methods

– Independent trees: bagging, random forest

– Adaptive trees: boosting such as AdaBoost (and GradientBoost)

• Many advantages:

– Simple and fast

– Can handle large data well (with automatic feature selection)

– Excellent performance

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 66/68



Classification trees and ensemble learning

Assignment 5

1. Apply random forest with 500 trees to the fashion-MNIST data and
report the accuracy. Plot the out-of-bag error and use it to select
a reasonable number of trees (T ). Apply random forest again but
with this size instead to the dataset. How does the corresponding
test error compare with that you obtained with 500 trees?

2. Apply bagging with the value of T used in Question 1 to the fashion-
MNIST data and report the accuracy. How does it compare with
random forest with the same value of T?

3. Repeat Question 2 with adaptive boosting instead of bagging.
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4. Implement the one-versus-one extension of LogitBoost and apply it
to fashion-MNIST. Discuss your results.

Bonus (5 points). Prove the minimizer of the theoretical log loss is also
half of the log odds function (see the bottom of slide 57).
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