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Multicollinearity (and Model Validation)

This lecture is based on the following part of the textbook:

• Multicollinearity: Sections 3.10, 9.1 – 9.5

• Model validation: Sections 11.1–11.2

Outline of the presentation:

• Effects of multicollinearity

• How to detect multicollinearity

• How to deal with multicollinearity

• Ridge regression (and model validation)
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Multicollinearity (and Model Validation)

Introduction

Recall the multiple linear regression model

y = β0 + β1x1 + β2x2 + · · ·+ βkxk + ε (1)

Given a set of n observations

y =


y1
y2
...
yn

 , X =


1 x11 x12 · · · x1k
1 x21 x22 · · · x2k
...

...
... . . . ...

1 xn1 xn2 · · · xnk


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Multicollinearity (and Model Validation)

the least-squares (LS) estimator of β = (β0, β1, . . . , βk)′ is

β̂ = (X′X)−1X′y

provided that X′X is nonsingular (or invertible).

Remark. The condition on X′X holds true if and only if X is of full column
rank, i.e, the columns of X are linearly independent.
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A serious issue in multiple linear regression is multicollinearity, or near-
linear dependence among the regression variables, e.g., x3 = 2x1 + 3x2.

• X won’t be of full rank (and correspondingly, X′X is not invertible)

• Redundant predictors carry no new information about the response:

y = β̂0 + β̂1x1 + β̂2x2 + β̂3x3 = β̂0 + (β̂1 + 2β̂3)x1 + (β̂2 + 3β̂3)x2

• The estimated slopes in the regression model will be arbitrary

y = x1 + x2 + 2x3 = 3x1 + 4x2 + x3 = 5x1 + 7x2 = · · ·
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The multicollinearity issue may arise for the following reasons:

• Too many predictors collected (without noticing their correlation),
e.g.,

x1 = arm length, x2 = leg length, x3 = height, . . .

• Higher-order terms used in the model (e.g. polynomial regression):

x1 = x, x2 = x2, x3 = x3, . . .

• Poor choice of data collection
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Multicollinearity (and Model Validation)

This lecture presents the following in detail:

• Effects of multicollinearity on a multiple regression model

• Tools to determine whether a model has multicollinearity problems

• Ways to deal with multicollinearity problems in a model
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Effects of multicollinearity
To study the effects of multicollinearity on regression, we consider a
multiple linear regression problem with two predictors x1, x2:

yi = β1xi1 + β2xi2 + εi, i = 1, . . . , n

where

• The response y is centered (ȳ = 0), and

• Both predictors have been normalized to have unit length, i.e.,

x̄1 = x̄2 = 0, and S11 = S22 = 1

such that X′X is the correlation matrix between them.
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Let the correlation between x1, x2 be

r12 =
∑

(xi1 − x̄1)(xi2 − x̄2)√∑
(xi1 − x̄1)2∑(xi2 − x̄2)2 −→ X′X =

(
1 r12
r12 1

)

It follows that

Var(β̂) = σ2(X′X)−1 = σ2 · 1
1− r2

12

(
1 −r12
−r12 1

)

That is,

Var(β̂1) = 1
1− r2

12
σ2 = Var(β̂2), Cov(β̂1, β̂2) = − r12

1− r2
12
σ2.
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Clearly,

Var(β̂1) = Var(β̂2)→∞ as r12 → 1 (or − 1).

This means that in the case of strong multicollinearity (|r12| ≈ 1), a
slightly different sample can lead to vastly different estimates of the model
parameters.

Another interesting phenomenon is that if there is multicollinearity in
a model, the parameters tend to be overestimated in magnitude.

To see this, consider the squared distance between the estimator β̂ and
the true value β:

‖β̂ − β‖2 =
∑
j

(β̂j − βj)2
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Taking expectation gives that

E
(
‖β̂ − β‖2

)
=
∑
j

E
[
(β̂j − βj)2

]
︸ ︷︷ ︸

=Var(β̂j)

= trace
(
Var(β̂)

)
= σ2 · trace

(
(X′X)−1

)
= σ2 · 2

1− r2
12

Thus, in the case of strong multicollinearity, β̂ is (on average) far from β.
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On the other hand,

E
(
‖β̂ − β‖2

)
= E

(
‖β̂‖2 + ‖β‖2 − 2β′β̂

)
= E

(
‖β̂‖2

)
+ ‖β‖2 − 2β′E

(
β̂
)

= E
(
‖β̂‖2

)
− ‖β‖2

Therefore,

E
(
‖β̂‖2

)
= ‖β‖2 + E

(
‖β̂ − β‖2

)
= ‖β‖2 + 2σ2

1− r2
12

This indicates that in the case of strong multicollinearity, the norm (length)
of the vector β̂ is (on average) much larger than that of β.
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Multicollinearity (and Model Validation)

Detecting multicollinearity
Ideally, we would like to know not only whether there is multicollinearity
in the model, but also what degree of problem we have (weak, moderate,
strong, etc.) and determine which predictor variable(s) cause the problem.

1. Scatterplot/correlation matrix: This is a good first step but can
only reveal near-linear dependence between a pair of predictors.

2. Variance inflation factors (VIFs): Can detect near-linear depen-
dence among any number of predictors.

3. Condition number of the correlation matrix (κ = λmax/λmin):
A large value (> 1000) indicates strong multicollinearity in the data.
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Multicollinearity (and Model Validation)

Detecting correlation between two predictors

When there is a clear linear dependence between two predictors, this can
be detected by

• looking at the scatter plot matrix of all predictors ←− can be
subjective

• computing the pairwise correlation scores ←− better

We demonstrate this with the Longley’s Economic Regression Data.1 2

1https://rweb.webapps.cla.umn.edu/R/library/datasets/html/longley.html
2https://www2.stat.duke.edu/courses/Fall16/sta721/slides/Ridge/ridge.html
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Example: Longley’s Economic Regression Data

There are 7 economical variables, observed yearly from 1947 to 1962 (n=16):

1. GNP.deflator: GNP implicit price deflator (1954=100)

2. GNP: Gross National Product.

3. Unemployed: number of unemployed.

4. Armed.Forces: number of people in the armed forces.

5. Population: ‘noninstitutionalized’ population ≥ 14 years of age.

6. Year: the year (time).

7. Employed (response): number of people employed.
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Matrix of pairwise correlations

GNP.deflator GNP Unemployed Armed.Forces Population Year
[1, ] 1.000 0.992 0.621 0.465 0.979 0.991
[2, ] 0.992 1.000 0.604 0.446 0.991 0.995
[3, ] 0.621 0.604 1.000 -0.177 0.687 0.668
[4, ] 0.465 0.446 -0.177 1.000 0.364 0.417
[5, ] 0.979 0.991 0.687 0.364 1.000 0.994
[6, ] 0.991 0.995 0.668 0.417 0.994 1.000

Conclusion: The following regressor pairs are all highly correlated:

(1,2), (1,5), (1,6), (2,5), (2,6), (5,6).
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Detecting correlation among three or more predictors

To check for multicollinearity among any number (k) of predictors, we
regress each single predictor xj , j = 1, . . . , k on the remaining ones, i.e.,

xj ∼ x1 + · · ·+ xj−1 + xj+1 + · · ·+ xk

and compute the corresponding coefficients of determination R2
j .

A large value of R2
j indicates strong linear dependence of xj on the other

regressors, thus implying multicollinearity of the predictors in the model.

However, the above process requires fitting k separate models. We present
a shortcut approach next.
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Given a set of observations X from a multiple linear regression model, let
W be the rescaled data matrix corresponding to unit length scaling:

X = [1 x1 . . .xk] −→ W = [w1 . . .wk]

That is,
wij = xij − x̄j√

Sjj
, i = 1, . . . , n, j = 1, . . . , k

Note that W′W is the correlation matrix for the predictors in the model.

The main diagonal elements of its inverse, (W′W)−1, are called the
variance inflation factors (VIF) of the regressors.
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Theorem 0.1. For each regressor j = 1, . . . , k,

R2
j = 1− 1

VIFj

(
or VIFj = 1

1−R2
j

)

Remark. Consider the following cases:

• When xj is nearly a linear combination of the other regressors:

R2
j ≈ 1 −→ VIFj is large

• When xj is orthogonal to all the other regressors:

R2
j = 0 −→ VIFj = 1
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How to use VIFs to detect multicollinearity:

• The larger these factors are, the more you should worry about
multicollinearity in your model.

A rule of thumb is that if for some j,

VIFj > 10

then multicollinearity is high among the predictors.

• On the other extreme, all VIFs being 1 mean that the predictors are
orthogonal to each other.
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Example: Longley’s Economic Regression Data (cont’d)

GNP.deflator GNP Unemployed Armed.Forces Population Year
[1, ] 1.000 0.992 0.621 0.465 0.979 0.991
[2, ] 0.992 1.000 0.604 0.446 0.991 0.995
[3, ] 0.621 0.604 1.000 -0.177 0.687 0.668
[4, ] 0.465 0.446 -0.177 1.000 0.364 0.417
[5, ] 0.979 0.991 0.687 0.364 1.000 0.994
[6, ] 0.991 0.995 0.668 0.417 0.994 1.000

VIF 135.5 1788.5 33.6 3.6 399.2 759.0

Condition number: κ(X′X) = 33, 076, 481, κ(W′W) = 8, 908, 139
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Multicollinearity (and Model Validation)

Another way of detecting the multicollinearity among all the predictors in
the data set is through examining the condition number of XX′.

Def 0.1. The condition number of a square matrix A is defined as the
ratio of its largest eigenvalue to its smallest eigenvalue:

κ(A) = λmax/λmin

Observations:

• A singular matrix has a condition number of infinity (worst).

• A nearly singular matrix has a “large” condition number.

• The identity matrix (or any constant multiple of it) has a condition
number of 1 (smallest possible).
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Multicollinearity (and Model Validation)

Remark. Generally,

• If the condition number is less than 100, there is no serious problem
with multicollinearity.

• Condition numbers between 100 and 1000 imply moderate to strong
multicollinearity.

• Condition numbers bigger than 1000 indicate severe multicollinearity.
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Multicollinearity (and Model Validation)

Remark. Scaling the predictors helps reduce the condition number!

• We can compute the condition number of XX′ (where X represents
the original design matrix). ←− The fitted model is ŷ = Xβ̂

• We could choose to scale the predictors first and then examine the
condition number of the correlation matrix WW′. ←− The fitted
model is ŷ = Wb̂

• The condition number of the correlation matrix WW′ indicates the
true extent of multicollinearity in the data.

(See another R demonstration with the National Football League dataset -
Table B1 in the Appendix of the textbook)
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Dealing with multicollinearity
1. If the multicollinearity is caused through bad sampling in predictor

space, then adding more data values at appropriate points can
correct the problem.

2. If the choice of the model causes the multicollinearity, then it may
be possible to reformulate the model to fix the problem (e.g., by
centering the variables in quadratic regression problems).

3. Ridge regression (and LASSO). ←− Will be covered next

4. Use model selection methods to eliminate redundant predictors
from the model. ←− To be covered in Chapter 10
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Ridge regression

We have seen that for least-squares regression, the magnitude of β̂ is
inflated if the data contains multicollinearity. That means that confidence
intervals for the slope parameters will tend to be wide and estimation of
the slopes can be unstable.

Ridge regression (for fitting a multiple regression model y ∼ x1+· · ·+xK)
is like least squares regression but shrinks the estimated coefficients
towards zero to fix the magnitude inflation.

To do this, Ridge regression assumes that the model has no intercept term,
or both the response and the predictors have been centered so that β̂0 = 0.
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It then fits a linear model by penalizing the coefficient vector β̂ for having
a large magnitude (‖β̂‖2 =

∑k
j=1 β̂

2
j ):

min
β̂
‖y−Xβ̂‖2︸ ︷︷ ︸
fitting error

+λ ‖β̂‖2︸ ︷︷ ︸
penalty

−→ β̂R (Ridge estimator)

Here, λ ≥ 0 is a tradeoff parameter (amount of shrinkage), which controls
the strength of the penalty term:

• When λ = 0, we get the least squares estimator: β̂R = (X′X)−1X′y

• When λ =∞, we get β̂R = 0

• Increasing the value of λ forces the norm of β̂ to decrease, yielding
smaller coefficient estimates (in magnitude).
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Remark.

• For a finite, positive value of λ, we are balancing two tasks: fitting
a linear model and shrinking the coefficients.

• Choosing an appropriate value of λ is important, yet not easy. We
will address it later.

• The penalty term ‖β̂‖2 would be unfair to the different predictors,
if they are not on the same scale. Therefore, if we know that
the variables are not measured in the same unit, we typically first
perform unit normal scaling on the columns of X (to standardize
the predictors), and then perform ridge regression.
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The solution to the Ridge regression problem always exists and is unique,
even when the data contains multicollinearity.

Theorem 0.2. The ridge estimator β̂R is given by the following

(X′X + λI)︸ ︷︷ ︸
PD, invertible

β̂ = X′y −→ β̂R = (X′X + λI)−1X′y

Proof. Differentiate the Ridge objective function with respect to β̂ and
set it to zero:

(2X′Xβ̂ − 2X′y) + 2λβ̂ = 0

Solving this equation would give the desired result.
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Properties of the ridge estimator

• The ridge estimator is biased:

E(β̂R) = (X′X+λI)−1X′Xβ

• As λ increases,

– the bias increases, but

– the variance decreases

Overall, ridge regression may
still achieve a smaller MSE
(= Bias2 + Var).
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Methods for setting the shrinkage parameter λ:

1. Ridge trace: Plot estimated coefficients in β̂R against small positive
values of λ, and select the smallest value of λ for which the parameter
estimates have “stabilized”.
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Remark.

• Choosing λ by inspection of the ridge trace is a subjective procedure
requiring judgment on the part of the analyst.

• The ‘select’ function can be used to select the value of λ:

## smallest value of GCV at 0.0028

• In your homework (Question 9.18), you are asked to try another
empirical method for setting λ (Equation 9.8, page 313).
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2. Model validation: Apply the corresponding regression models to an
independent set of data and compare the resulting prediction errors

(1). Confirmation runs. Collect new data after the model has been fit
to an existing data set

– If the existing model gives realistic predictions for the new data,
users can have confidence in the validity of the model.

– There should be a good number of new points for testing the
model and they should ideally be spaced out in predictor space.

– This validation method is most effective, but could be costly,
or time consuming.
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(2). Data splitting. A cheaper way of performing model validation by
artificially/randomly partitioning the data into two parts:

– estimation/training data: for fitting the model

– prediction/validation data: for evaluating the fitted model
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Remark.

• Usually, the estimation set is larger than the validation set to ensure
sufficient precision.

• If the data are collected over time (or over different locations), then
time (or location) may be used as the basis of data splitting.

• A commonly-used data splitting scheme is called cross validation;
see next slide for detail.
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m-fold cross validation (CV):
Fix an integer m and partition the
given data randomly into m equal-
sized subsets (called folds).

b
b

b

When each fold has only 1 data
point, it is called leave-one-out CV.

For each value of λ do the following:

• Of the m subsets, each one
is retained as validation data
once and the remaining m− 1
are used as estimation data
−→ epred(i), 1 ≤ i ≤ m

• Compute overall prediction er-
ror eCV(λ) =

∑m
i=1 epred(i)

−→ PRESS if m = n.

The optimal λ is the one minimizing
the CV error: λ∗ → minλ eCV(λ)
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R code

#install.packages(“parcor”)
library(parcor)
ridge.object<-ridge.cv(X,y,
lambda=seq(0, 0.1, 0.0001),
scale=TRUE,
k=10,
plot.it=TRUE)
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> ridge.object

$intercept

65.317

$coefficients

XGNP.deflator XGNP XUnemployed XArmed.Forces XPopulation XYear
-0.01935171 -1.60336592 -1.61615589 -0.66190834 -0.86949367 7.24516124

$lambda.opt

[1] 0.003325141
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Recap: Ridge regression minimizes the usual regression criterion plus a
penalty term on the squared L2 norm of the coefficient vector. As such, it
shrinks the coefficients towards zero. This introduces some bias, but can
greatly reduce the variance, resulting in a better mean-squared error.

The amount of shrinkage is controlled by λ: Large λ means more shrinkage,
and so we get different coefficient estimates for different values of λ. Cross
validation is an effective way of choosing an appropriate value of λ.

It can be shown that ridge regression does not set coefficients exactly to
zero unless λ =∞ (in which case they’re all zero). Hence, ridge regression
cannot perform variable selection, and even though it performs well in
terms of prediction accuracy, it does not offer a clear interpretation.
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The LASSO
LASSO (Least Absolute Selection and Shrinkage Operator) differs from
ridge regression only in terms of the norm used by the penalty term:

• Ridge regression:

min
β̂
‖y−Xβ̂‖2︸ ︷︷ ︸
fitting error

+λ ‖β̂‖2︸ ︷︷ ︸
penalty

−→ β̂R

where the vector norm is the `2 norm: ‖β̂‖ =
√∑

β̂2
j .

We have pointed out that the `2 penalty only shrinks the coefficients
but never forces them to be zero.
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• LASSO:
min

β̂
‖y−Xβ̂‖2︸ ︷︷ ︸
fitting error

+λ ‖β̂‖1︸ ︷︷ ︸
penalty

−→ β̂L

where ‖β̂‖1 =
∑
|β̂j | is the `1 norm.

The nature of the `1 penalty will cause some coefficients to be
shrunken to zero exactly, and thus it is able to perform variable
selection in the linear model: As λ increases, more coefficients are
set to zero (less variables are selected), and among the nonzero
coefficients, more shrinkage is employed.

In terms of prediction error (or mean squared error), lasso performs com-
parably to ridge regression, yet it has a big advantage w.r.t. interpretation.
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(https://www.stat.cmu.edu/~ryantibs/datamining/lectures/17-modr2.pdf)
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R code for lasso with the Longley data:

https://www2.stat.duke.edu/courses/Fall16/sta721/slides/Lasso/lasso.pdf
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Summary
• Multicollinearity: Effects, detection, and treatment

• Ridge regression (not a model selection algorithm):

min
β̂
‖y−Xβ̂‖2 + λ‖β̂‖2 −→ β̂R

• LASSO (can perform model selection):

min
β̂
‖y−Xβ̂‖2 + λ‖β̂‖1 −→ β̂L

9.5.4 Principal-Component Regression (further learning)
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