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This lecture is based on the following textbook sections:

• Chapter 10 (Sections 10.1 - 10.3, 10.5)

Outline of the presentation

• Brownian motion: definitions and concepts

• Variations of Brownian motion
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Math 263, Brownian motion

Consider the symmetric random walk over the set of integers

pi ,i−1 = 1

2
= pi ,i+1, i ∈Z

but we are going to speed up this process by taking smaller and smaller
steps in smaller and smaller time intervals. This will converge to the
Brownian motion process.
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Math 263, Brownian motion

More precisely, suppose that we start off from 0 and for each ∆t time
unit we take a step of size ∆x either to the left or the right with equal
probabilities.

If we let X (t ) denote the position at time t , then

X (t ) = (X1 +·· ·+Xn)∆x,

where n = t/∆t and X1, X2, . . . are iid according to the following distribution

P (Xi =−1) = P (Xi = 1) = 1

2
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Math 263, Brownian motion

Since E(Xi ) = 0, Var(Xi ) = 1, we have

E(X (t )) = 0, Var(X (t )) = n(∆x)2 = (∆x)2

∆t
t

If we let ∆t ,∆x → 0 but fix ∆x =σ
p
∆t for some positive constant σ, then

E(X (t )) = 0, Var(X (t )) →σ2t
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Math 263, Brownian motion

A few observations about the limiting distribution:

• By the central limit theorem, X (t ) ∼ N (0,σ2t ).

• {X (t ), t ≥ 0} has independent increments, that is, for all 0 = t0 < t1 <
t2 < ·· · < tn ,

X (ti )−X (ti−1), i = 1,2, . . . ,n

are independent.

• {X (t ), t ≥ 0} has stationary increments, i.e., the distribution of X (t +
s)−X (s) does not depend on s.

• X (t ) should be a continuous function of t .
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Math 263, Brownian motion

Def 0.1. A stochastic process {X (t ), t ≥ 0} is said to be a Brownian motion
process, or a Wiener process, if

• X (0) = 0

• {X (t ), t ≥ 0} has independent and stationary increments

• For every t > 0, X (t ) ∼ N (0,σ2t )
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Math 263, Brownian motion

Remark. When σ= 1, the process is called standard Brownian motion.

Because any Brownian motion can be converted to the standard process
by letting B(t ) = X (t )/σ we shall, unless otherwise stated, we will suppose
that σ= 1:

ft (x) = 1p
2πt

e−x2/2t
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Math 263, Brownian motion

Remark. X (t ) as a function on [0,∞) is continuous, but non-differentiable
everywhere.

An informal proof is the following: Let h > 0 be a small number. Then

X (t +h)−X (t ) ∼ N (0,h).

and
1

h
(X (t +h)−X (t )) ∼ N (0,

1

h
).

As h → 0, X (t +h)−X (t ) → 0 but 1
h (X (t +h)−X (t )) does not converge.
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Math 263, Brownian motion
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Math 263, Brownian motion

Theorem 0.1. The joint density function of X (t1), X (t2), . . . , X (tn) for any
0 = t0 < t1 < t2 < ·· · < tn is

f (x1, x2, . . . , xn) = (2π)−n/2
n∏

i=1
(ti − ti−1)−1/2 exp

(
−1

2

n∑
i=1

(xi −xi−1)2

ti − ti−1

)
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Math 263, Brownian motion

Proof. Because

(X (t0) = 0 = x0)

X (t1) = x1 −→ X (t1)−X (t0) = x1 −x0

X (t2) = x2 −→ X (t2)−X (t1) = x2 −x1

... ...
X (tn) = xn −→ X (tn)−X (tn−1) = xn −xn−1
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Math 263, Brownian motion

we have

f (x1, x2, . . . , xn) =
n∏

i=1
fti−ti−1 (xi −xi−1)

=
n∏

i=1

1p
2π(ti − ti−1)

exp

(
− (xi −xi−1)2

2(ti − ti−1)

)
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Math 263, Brownian motion

Corollary 0.2. The conditional density of X (s) given X (t ) = B for s < t is

fs|t (x | B) = 1p
2πs(t − s)/t

e−
(x−B s/t )2

2s(t−s)/t

This implies that

E(X (s) | X (t ) = B) = B s/t , Var(X (s) | X (t ) = B) = s(t − s)/t
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Math 263, Brownian motion

Proof.

fX (s)|X (t )(x | B) = fs(x) ft−s(B −x)

ft (B)
∝ e−x2/2s ·e−(B−x)2/2(t−s)

∝ exp

(
−1

2

(
t

s(t − s)
x2 −2

B

t − s
x

))
∝ exp

(
− 1

2s(t − s)/t

(
x − B s

t

)2)
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Math 263, Brownian motion

Let Ta denote the first time the Brownian motion process hits a > 0. Then
one can prove the following result.
Theorem 0.3.

P (Ta < t ) = 2p
2π

∫ ∞

a/
p

t
e−y2/2 dy

Proof.

P (Ta < t ) = P (Ta < t , X (t ) > a)+P (Ta < t , X (t ) < a)

= 2P (Ta < t , X (t ) > a) = 2P (X (t ) > a)

= 2p
2πt

∫ ∞

a
e−x2/2t dx
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Math 263, Brownian motion

Remark. For a < 0, Ta = T−a due to symmetry.

Remark. Another random variable of interest is the maximum value the
process attains in [0, t ]. Its distribution is obtained as follows:

P

(
max
0≤s≤t

X (s) ≥ a

)
= P (Ta ≤ t ), a > 0.
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Math 263, Brownian motion

Let us show that the probability that Brownian motion hits A before
−B where A > 0,B > 0 is B

A+B . To compute this we shall make use of
the interpretation of Brownian motion as being a limit of the symmetric
random walk.

| | | | | |||

−B A0

0 1 i = B
∆x N = A+B

∆x

By the results of the gambler’s ruin problem,

P (up A before down B) = B/∆x

(A+B)/∆x
= B

A+B
.
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Math 263, Brownian motion

Def 0.2. We say that {X (t ), t ≥ 0} is a Brownian motion process with drift
coefficient µ and variance parameter σ2 if

• X (0) = 0;

• {X (t ), t ≥ 0} has stationary and independent increments;

• X (t ) ∼ N (µt ,σ2t ) for all t > 0.

Remark. An equivalent definition is to let {B(t ), t ≥ 0} be standard Brownian
motion and then define

X (t ) =σB(t )+µt
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Math 263, Brownian motion

Def 0.3. A stochastic process {Y (t ), t ≥ 0} is called geometric Brownian
motion if its logarithmic is a Brownian motion process (with drift coefficient
µ and variance parameter σ2):

log X (t ) =σB(t )+µt︸ ︷︷ ︸
Y (t )

−→ X (t ) = eY (t )

Geometric Brownian motion is useful in the modeling of stock prices over
time when you feel that the percentage changes are independent and
identically distributed.
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Math 263, Brownian motion

For instance, suppose that Xn is the price of some stock at time n. Then, it
might be reasonable to suppose that Yn = Xn/Xn−1,n ≥ 1 are independent
and identically distributed. It follows that

Xn = Yn Xn−1 = YnYn−1Xn−2 = ·· · = YnYn−1 · · ·Y1X0

Therefore,
log(Xn) =

n∑
i=1

log(Yi )+ log(X0)

Since log(Yi ), i ≥ 1 are independent and identically distributed, {log(Xn)}

will, when suitably normalized, approximately be Brownian motion with a
drift, and so {Xn} will be approximately geometric Brownian motion.
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Math 263, Brownian motion

Theorem 0.4. For a geometric Brownian motion process {X (t ), t ≥ 0},

E[X (t ) | X (u), 0 ≤ u ≤ s] = X (s)e(t−s)(µ+σ2/2), s < t

Proof.

E[X (t ) | X (u), 0 ≤ u ≤ s] =E[eY (t ) | Y (u), 0 ≤ u ≤ s]

= eY (s)E[eY (t )−Y (s) | Y (u), 0 ≤ u ≤ s]

= eY (s)E[eY (t )−Y (s)]

= eY (s)eµ(t−s)+(t−s)σ2/2

where we have used the MGF MN (µ,σ2)(a) = eaµ+a2σ2/2 at a = 1.
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Math 263, Brownian motion

Let X (s), s ≥ 0 be a Brownian motion process with drift coefficient µ and
variance parameter σ2. Define

M(t ) = max
0≤s≤t

X (s)

We would like to determine the distribution of M(t ), the maximum of the
process up to time t .

Remark. Let Ty denote the first time the Brownian motion hits y . Then

Ty ≤ t ←→ M(t ) ≥ y.
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Math 263, Brownian motion

Below is the main result about M(t ).
Theorem 0.5. Let X (s), s ≥ 0 be a Brownian motion process with drift
coefficient µ and variance parameter σ2. Then

P (M(t ) ≥ y | X (t ) = x) = e−2y(y−x)/tσ2
, y ≥ x

This implies that

P (M(t ) ≥ y) = e2yµ/σ2
Φ̄

(
y +µt

σ
p

t

)
+ Φ̄

(
y −µt

σ
p

t

)
where Φ̄(x) = 1−Φ(x) represents the complementary cdf of N (0,1).
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Math 263, Brownian motion

Outline of the proof:

To prove the theorem, we first need to derive the following lemma.

Lemma. For any Y1, . . . ,Yn
iid∼ N (θ, v2), the conditional distribution of

Y1, . . . ,Yn given ∑
Yi = x does not depend on θ.

This result indicates that the sample total (or mean) from a normal
population is a sufficient statistic for the population mean. That is,
given the value of the statistic (∑Yi ), the sample provides no additional
information about the target population parameter (θ).
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Math 263, Brownian motion

A direct application of the lemma to the Brownian motion process with
drift coefficient µ and variance parameter σ2 shows that the conditional
distribution of X (s),0 ≤ s < t does not depend on µ.

Specifically, fix n and set ti = i
n t , i = 0, 1, . . . ,n. We show that the condi-

tional distribution of X (t1), . . . , X (tn),0 = t0 < t1 < . . . < tn = t given X (t ) = x

does not depend on µ. To see this, let

Yi = X (ti )−X (ti−1), i = 1, . . . ,n

Then Y1, . . . ,Yn are iid N (µt/n,σ2t/n). By the lemma, the conditional
distribution of Y1, . . . ,Yn given ∑

i=1 Yn = X (t ) = x does not depend on µ.
It follows that the conditional distribution of X (t1), . . . , X (n) given X (t ) = x

does not depend on µ.
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Math 263, Brownian motion

We now derive the formula for the conditional distribution of M(t ) given
X (t ) = x. Note that the conditional distribution of M(t ) given X (t ) = x

does not depend on µ. Thus, without loss of generality, suppose µ= 0.

We then consider the event that

X (t ) ≈ x, i.e., x ≤ X (t ) ≤ x +h

for small h. The probability is

P (X (t ) ≈ x) ≈ fX (t )(x) ·h
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Math 263, Brownian motion

We have

P (M(t ) ≥ y | X (t ) ≈ x) = P (M(t ) ≥ y, X (t ) ≈ x)

P (X (t ) ≈ x)

= P (Ty ≤ t , X (t ) ≈ x)

P (X (t ) ≈ x)

= P (Ty ≤ t , X (t ) ≈ 2y −x)

P (X (t ) ≈ x)

= P (X (t ) ≈ 2y −x)

P (X (t ) ≈ x)

= fX (t )(2y−x)

fX (t )(x)

= e−2y(y−x)/tσ2
.
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Math 263, Brownian motion

Lastly, to derive the formula for P (M(t ) ≥ y), we condition on X (t ) = x:

P (M(t ) ≥ y) =
∫ ∞

−∞
P (M(t ) ≥ y | X (t ) = x) fX (t )(x)dx

=
∫ y

−∞
P (M(t ) ≥ y | X (t ) = x) fX (t )(x)dx +

∫ ∞

y
1 · fX (t )(x)dx

=
∫ y

−∞
e−2y(y−x)/tσ2 1p

2πtσ2
e−(x−µt )2/2tσ2

dx +P (X (t ) > y)dx

= e2µy/σ2
∫ y

−∞
1p

2πtσ2
e−(x−µt−2y)2/2tσ2

dx +P (X (t ) > y)

= e2µy/σ2
Φ

(−y −µt

σ
p

t

)
+ Φ̄

(
y −µt

σ
p

t

)
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