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This lecture is based on the following textbook sections:

• Section 10.7

Outline of the presentation

• Multivariate normal distributions

• Definition of Gaussian Processes

• Examples

• Gaussian Processes Regression



Math 263, Gaussian processes

First, we recall the definition of multivariate normal distributions.

Def 0.1 (X ∼ N (µ,Σ)). We say that a k-dimensional random vector
X = (X1, . . . , Xk )T has a multivariate normal distribution, if their joint density
has the form

f (x1, . . . , xk ) = (2π)−k/2 det(Σ)−1/2 exp

(
−1

2
(x−µ)TΣ−1(x−µ)

)
where

• µ ∈Rk : mean vector;

• Σ ∈Rk×k : covariance matrix.
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Math 263, Gaussian processes

Remark. In a multivariate normal variable, X = (X1, . . . , Xk )T ,

• Each component Xi ∼ N (µi ,Σi i ).

• Each pair of components Cov(Xi , X j ) =Σi j

• Every linear combination of components has a univariate normal
distribution (note that this is also a sufficient condition for the joint
normality):

Y = aT X = a1X1 +·· ·+ak Xk ∼ N (aTµ,aTΣa)

• Another sufficient and necessary condition for joint normality is that
the random variables X1, . . . , Xk are linear combinations of several
independent normal random variables.
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Remark. When k = 2 (bivariate normal), the above density reduces to

f (x1, x2) = 1

2πσ1σ2
√

1−ρ2
·

exp

(
− 1

2(1−ρ2)

[
(x1 −µ1)2

σ2
1

+ (x2 −µ2)2

σ2
2

− 2ρ(x1 −µ1)(x2 −µ2)

σ1σ2

])
Here, the mean and covariance of the bivariate normal are

µ=
(
µ1

µ2

)
, Σ=

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
The conditional distribution of X2 given X1 is

X2 | X1 = x1 ∼ N

(
µ2 + σ2

σ1
ρ(x1 −µ1), (1−ρ2)σ2

2

)
.
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Math 263, Gaussian processes

More generally, we have the following result.
Theorem 0.1. If XA ∈Ra and XB ∈Rb jointly have a multivariate normal
distribution, i.e., (

XA

XB

)
∼ N

((
µA

µB

)
,

(
ΣA A ΣAB

ΣB A ΣBB

))
,

then the conditional distribution of XB given XA = xA is also multivariate
normal:

XB | XA = xA ∼ N
(
µB +ΣB AΣ

−1
A A(xA −µA), ΣBB −ΣB AΣ

−1
A AΣAB

)
.
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We are now ready to present the definition of Gaussian processes.

Def 0.2. A stochastic process X (t ), t ≥ 0 is called a Gaussian process
with mean function µ(·) and covariance function κ(·, ·) if for all n ∈Z+ and
all t1, . . . , tn > 0, the collection X (t1), . . . , X (tn) have a multivariate normal
distribution:

(X (t1), . . . , X (tn))T ∼ N (µ,Σ)

where
µ= (µ(t1), . . . ,µ(tn))T , Σ= (κ(ti , t j ))1≤i , j≤n

(This is the same as saying that every linear combination of X (t1), . . . , X (tn),
including each of them individually, has a univariate Gaussian distribution)
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Example 0.1. Brownian motion processes are Gaussian processes.

Proof. For all t1, . . . , tn > 0, each X (ti ) is a linear combination of the inde-
pendent normal random variables X (t1), X (t2)−X (t1), . . . , X (tn)−X (tn−1).
Thus, X (t1), . . . , X (tn) collectively have a multivariate normal distribution.

Remark. For the standard Brownian motion treated as a Gaussian process,
the above collection have zero mean µ= 0 and covariances: For ti < t j ,

Cov(X (ti ), X (t j )) =Cov(X (ti ), X (ti )+X (t j )−X (ti )) =Cov(X (ti ), X (ti )) = ti

For this model, the underlying mean and covariance functions are

µ(t ) = 0, κ(s, t ) =Cov(X (s), X (t )) = min(s, t )
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In general, one can define new Gaussian processes by choosing proper
covariance functions κ(s, t ) =Cov(X (s), X (t )):

• κ(s, t ) = min(s, t )

• κ(s, t ) = exp
(
− (s−t )2

2τ2

)
• κ(s, t ) = (st + c)2

For simplicity, we always set the mean function to zero: µ(t ) = 0 (if it is not
zero, then we can always remove it from the process: X (t ) ← X (t )−µ(t ))
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Figure 1: Samples from different Gaussian processes (corresponding to
different covariance functions)
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Def 0.3. Let {X (t ), t ≥ 0} be a standard Brownian motion process. The
conditional stochastic process {X (t ),0 ≤ t ≤ 1 | X (1) = 0} is called the
Brownian bridge process.

Theorem 0.2. Brownian bridge is a Gaussian process with mean µ(t ) = 0

and covariance function Cov(X (s), X (t )) = s(1− t ) for s < t < 1.
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Proof. For all 0 < t1 < ·· · < tn < 1, the joint distribution of

X (t1), . . . , X (tn), X (1)

is multivariate normal.

It follows that the the conditional joint distribution of X (t1), . . . , X (tn) given
X (1) = 0 is also multivariate normal.

This shows that Brownian bridge is a Gaussian process.
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We compute the mean and covariance of the process below.

First, for any s < 1,
E(X (s) | X (1) = 0) = 0

where we used the result

X (s) | X (t ) = B ∼ N (B s/t , s(t − s)/t ).
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Next, for any s < t < 1,

Cov[(X (s), X (t )) | X (1) = 0] =E(X (s)X (t ) | X (1) = 0)

=E[E(X (s)X (t ) | X (t ), X (1) = 0) | X (1) = 0]

=E[X (t )E(X (s) | X (t )) | X (1) = 0]

=E[X (t )
s

t
X (t ) | X (1) = 0]

= s

t
E[X (t )2 | X (1) = 0]

= s

t

t (1− t )

1
= s(1− t ).
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Another way of obtaining a Brownian bridge process is below.
Theorem 0.3. Let {X (t ), t ≥ 0} be a standard Brownian motion process.
Then

Z (t ) = X (t )− t X (1), 0 ≤ t ≤ 1

is a Brownian bridge process.

Proof. For all 0 < t1, . . . , tn < 1, the random variables

Z (t1) = X (t1)− t1X (1), . . . , Z (tn) = X (tn)− tn X (1)

are all linear combinations of the X (t1), . . . , X (tn), X (1), thus jointly having
a multivariate normal distribution.
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It suffices to show that it has the same mean and covariance functions
with the Brownian bridge:

E(Z (t )) =E(X (t ))− tE(X (1)) = 0

Cov(Z (s), Z (t )) =Cov(X (s)− sX (1), X (t )− t X (1))

=Cov(X (s), X (t ))− t Cov(X (s), X (1))− s Cov(X (1), X (t ))

+ st Cov(X (1), X (1))

= s − t s − st + st

= s(1− t ), for s < t .
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Def 0.4. Let {X (t ), t ≥ 0} be a Brownian motion process. The process
{Z (t ), t ≥ 0} defined by

Z (t ) =
∫ t

0
X (s)ds, for all t ≥ 0

is called Integrated Brownian motion.

Interpretation:

• Z (t ): price of certain commodity at time t

• X (t ) = d
dt Z (t ): rate of change of price at time t ← Brownian motion
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Theorem 0.4. The integrated Brownian motion {Z (t ), t ≥ 0} is also a
Gaussian process. When it is defined on the standard Brownian motion,
we have

E(Z (t )) = 0, Cov(Z (s), Z (t )) = s2
(

t

2
− s

6

)
, s < t

Proof. The joint normality of Z (t ) in different locations t1, . . . , tn can be
shown by writing the integral as a limit of approximating sums.
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We now verify the mean and covariance functions for the integrated
standard Brownian motion: Z (t ) = ∫ t

0 X (s)ds, where X (t ) is standard
Brownian motion.

First,
E(Z (t )) =E

(∫ t

0
X (s)ds

)
=

∫ t

0
E(X (s))ds = 0
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For the covariance part, suppose s < t . Then

Cov(Z (s), Z (t )) =E(Z (s)Z (t ))

=E
(∫ s

0
X (u)du

∫ t

0
X (v)dv

)
=E

(∫ s

0

∫ t

0
X (u)X (v)dv du

)
=

∫ s

0

∫ t

0
E (X (u)X (v)) dv du

=
∫ s

0

∫ t

0
min(u, v)dv du

= s2
(

t

2
− s

6

)
.
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Gaussian process regression

Gaussian processes provide a way to model the probability distribution of
functions X : [0,∞) 7→R (which are regarded as sampled trajectories of a
Gaussian process):

X (·) ∼ GP(µ(·),κ(·, ·))

That is, for any finite number of sampled locations t1, t2, . . . , tn > 0, the
restriction of the function to those fixed locations is assumed to have a
multivariate normal distribution:

~X = (X (t1), X (t2), . . . , X (tn))T ∼ N ((µ(ti ))1≤i≤n , (κ(ti , t j ))1≤i , j≤n)
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We assume µ= 0 and first consider the squared exponential kernel function

κSE(t , t ′) = exp(−‖t − t ′‖2/2τ2)

Functions drawn from such a Gaussian process will tend to be distributed
around zero and “locally smooth”with high probability; i.e.,

• nearby function values are highly correlated, and

• the correlation drops off as a function of distance in the input space.

This can be thought of as a prior distribution for functions in the context
of Bayesian inference.
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Now consider the regression setting where we have a set of (noiseless)
observations (si , xi ), i = 1, . . . ,m, from some unknown function.

Given new locations ti , i = 1, . . . ,n, the goal is to predict the values of the
function at those locations.

b

b
b

b

b
b

b

s1 s2 sm
× × × × ×××

t1 t2 tn

×
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This turns out to be equivalent to finding the conditional distribution of
X (t1), . . . , X (tn) given X (s1) = x1, . . . , X (sm) = xm .

First, the union of the two sets of random variables have a joint multivariate
normal distribution

(X (t1), . . . , X (tn), X (s1), . . . , X (sm)) ∼ N (0,Σ), Σ=
(
Σ(t t ) Σ(t s)

Σ(st ) Σ(ss)

)
.

It follows that

X (t1), . . . , X (tn) | X (s1) = x1, . . . , X (sm) = xm

∼ N
(
Σ(t s) (Σ(ss))−1

x, Σ(t t ) −Σ(t s) (Σ(ss))−1
Σ(st )

)
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Thus, our prediction would be

E[X (t1), . . . , X (tn) | X (s1) = x1, . . . , X (sm) = xm] =Σ(t s) (Σ(ss))−1
x.

See the figure below for a demonstration.
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Remark. Special cases:

• m = n = 1:
E[X (t ) | X (s) = x] = exp

(
−|t − s|2

2τ2

)
x.

• m = 1,n > 1:

E[X (t1), . . . , X (tn) | X (s) = x] =
(
e−|t1−s|2/2τ2

, . . . ,e−|tn−s|2/2τ2
)

x.

• m = 2,n = 1:

E[X (t ) | X (s1) = x1, X (s2) = x2]

=
(
e−|t−s1|2/2τ2

,e−|t−s2|2/2τ2
)(

1 e−|s1−s2|2/2τ2

e−|s2−s1|2/2τ2
1

)−1 (
x1

x2

)
.
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Remark. When having independent N (0,σ2) noise, the formula becomes

E[X (t1), . . . , X (tn) | X (s1) = x1, . . . , X (sm) = xm] =Σ(t s) (Σ(ss) +σ2I
)−1

x.
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A MATLAB demonstration

https://www.mathworks.com/help/stats/gaussian-process-regression-models.html
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Comments on GP regression

• Nonparametric (lazy learning)

• Flexible, powerful

• Computationally intensive for high dimensional data (overfitting
could occur as well).
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Further learning on GP regression

• Stanford CS 229 Lecture Notes1

• Gaussian Processes for Machine Learning (textbook)2

• The Gaussian Processes Website3

1http://cs229.stanford.edu/section/cs229-gaussian_processes.pdf
2http://www.gaussianprocess.org/gpml/chapters/RW.pdf
3http://www.gaussianprocess.org
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