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This lecture is based on the following textbook sections:

= Section 10.7

Outline of the presentation
= Multivariate normal distributions
= Definition of Gaussian Processes
= Examples

» Gaussian Processes Regression



Math 263, Gaussian processes

First, we recall the definition of multivariate normal distributions.

Def 0.1 (X~ N(u,X)). We say that a k-dimensional random vector
X= (Xl,...,Xk)T has a multivariate normal distribution, if their joint density
has the form

1
Fx1,..x) = @) ¥ 2 det(Z) "2 exp -5 &= w2l x—-p
where

= peRF: mean vector;

» 3 eRF*k. covariance matrix.
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Math 263, Gaussian processes

Remark. In a multivariate normal variable, X = (X3,..., X7,
» Each component X; ~ N(u;, X;;).
= Each pair of components Cov(X;, X;) = Z;;

» Every linear combination of components has a univariate normal
distribution (note that this is also a sufficient condition for the joint
normality):

Y=alX=a, X1+ +ai Xp ~ N@' p,a’ =a)

= Another sufficient and necessary condition for joint normality is that
the random variables Xj,..., X are linear combinations of several
independent normal random variables.
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Math 263, Gaussian processes

Remark. When k =2 (bivariate normal), the above density reduces to
1
2n0102y/1 - p?

exp (_ 1 (x1 — )? N (X2 — p2)? _2p0xy — ) (x2 — p2) ])
2(1-p2)

2 2
Here, the mean and covariance of the bivariate normal are

flx1,x0) =

0'1 0’2 0102

p= H1 5 0% 00102
H2 ’ p0102 U%

The conditional distribution of X, given Xj is

02 2, 2
X | X1=x1 ~ N(M2+0—P(x1—ﬂl), (1—p)02).
1
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Math 263, Gaussian processes

More generally, we have the following result.

Theorem 0.1. If X4 € R* and Xz € R? jointly have a multivariate normal

) (e 3

then the conditional distribution of Xp given X4 =x4 is also multivariate

distribution, i.e.,

X4
Xp

Zaa ZaB
2pa 2BB

)

normal:

XplXa=x4 ~ N(up+ ZBAZZ}L‘(XA —Ha), Zpp-— ZBAZZ}quB) .
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Math 263, Gaussian processes

We are now ready to present the definition of Gaussian processes.

Def 0.2. A stochastic process X (1), =0 is called a Gaussian process
with mean function u(-) and covariance function «(-,-) if for all n€ Z* and
all 1,...,¢t,>0, the collection X(#7),...,X(t;) have a multivariate normal
distribution:

(Xt 0, X(t))T ~ N(, Z)

where
=), mt), Z =, 6)1<i j<n

(This is the same as saying that every linear combination of X(#,),..., X(t,),
including each of them individually, has a univariate Gaussian distribution)
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Math 263, Gaussian processes

Example 0.1. Brownian motion processes are Gaussian processes.

Proof. For all t1,...,t, >0, each X(¢;) is a linear combination of the inde-
pendent normal random variables X (#,), X(£) — X(t1),..., X(t;) — X (ty-1).
Thus, X(t),...,X(t,) collectively have a multivariate normal distribution.

Remark. For the standard Brownian motion treated as a Gaussian process,
the above collection have zero mean g =0 and covariances: For f; < tj,

Cov(X(tj), X (tj)) = Cov(X(£;), X (£;) + X (t7) — X(¢;)) = Cov(X(¢t;), X (;)) = ¢;
For this model, the underlying mean and covariance functions are

w()=0, «(s,t)=Cov(X(s),X(#))=min(s,?)
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Math 263, Gaussian processes

In general, one can define new Gaussian processes by choosing proper
covariance functions « (s, £) = Cov(X(s), X (1)):

= x(s,t) =min(s, t)
. K(s,t)=exp(—%)

n Kk(s, 1) = (st+c)?

For simplicity, we always set the mean function to zero: pu(t) =0 (if it is not
zero, then we can always remove it from the process: X () — X(f) — u(1))
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e
H:EXP(T) % =min(z,z')

k=(zT :l:’-*—c)2
T T T T

Figure 1: Samples from different Gaussian processes (corresponding to
different covariance functions)
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Math 263, Gaussian processes

Def 0.3. Let {X(1),1=0} be a standard Brownian motion process. The
conditional stochastic process {X(f),0 < t<1]| X(1) =0} is called the
Brownian bridge process.

Theorem 0.2. Brownian bridge is a Gaussian process with mean u(t) =0
and covariance function Cov(X(s), X(#))=s(1-1¢) for s<t<]1.
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Math 263, Gaussian processes

Proof. Forall 0<t; <---<t, <1, the joint distribution of
X(tl)w-wX(tn)yX(l)
is multivariate normal.

It follows that the the conditional joint distribution of X(ty),..., X(¢,) given
X (1) =0 is also multivariate normal.

This shows that Brownian bridge is a Gaussian process.
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Math 263, Gaussian processes

We compute the mean and covariance of the process below.

First, for any s<1,
E(X(s)| X(1)=0)=0

where we used the result

X | X(t)=B ~ N(Bs/t,s(t—9)/1).
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Math 263, Gaussian processes

Next, for any s<r<1,

Cov[(X(s), X(1) | X(1) =0] =E(X(9)X(#) | X(1) = 0)
=EEX®X@®)|X(0,X1)=0)]X(1)=0]
=EX(DEX(s) | X() | X(1) =0]

s
=E[X(t);X(t)IX(1) =0]

= ;E[X(”Z | X(1) =0]

_ft(l—t)
i

=s(1-1.
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Math 263, Gaussian processes

Another way of obtaining a Brownian bridge process is below.

Theorem 0.3. Let {X(#),t =0} be a standard Brownian motion process.
Then

Z()=X1®)—-tX1), 0<t=<1
is a Brownian bridge process.
Proof. For all 0<ty,...,t, <1, the random variables
Z(h) =X(h) - nX(A), ..., Z(ty) = X(1,) — 1, X(1)

are all linear combinations of the X(#y),..., X(¢;), X(1), thus jointly having
a multivariate normal distribution.
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Math 263, Gaussian processes

It suffices to show that it has the same mean and covariance functions
with the Brownian bridge:

E(Z(1)) =EX() - E(X(1)) =0
Cov(Z(s), Z(1)) = Cov(X(s) — sX (1), X(1) —tX (1))
= Cov(X(s), X(#)) — tCov(X(s), X (1)) — sCov(X(1), X (1))
+ stCov(X(1), X(1))
=S—ts—St+st

=s(1-1), fors<t.

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 18/35




Math 263, Gaussian processes

Def 0.4. Let {X(£),t =0} be a Brownian motion process. The process
{Z(1),t =0} defined by

t
Z(t)=f X(s)ds, forall t=0
0

is called Integrated Brownian motion.

Interpretation:
= Z(1t): price of certain commodity at time ¢

» X(1) = %Z(t): rate of change of price at time ¢ — Brownian motion
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Math 263, Gaussian processes

Theorem 0.4. The integrated Brownian motion {Z(t),t = 0} is also a
Gaussian process. When it is defined on the standard Brownian motion,

we have

E(Z(1) =0, Cov(Z(s),Z(t)) =s* (%—%), s<t

Proof. The joint normality of Z(¢) in different locations #,...,t,; can be
shown by writing the integral as a limit of approximating sums.
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Math 263, Gaussian processes

We now verify the mean and covariance functions for the integrated

standard Brownian motion: Z(t) = f; X(s)ds, where X(¢) is standard
Brownian motion.

First, . .
E(Z(1) :E(/ X(s)ds) :f E(X(s))ds=0
0 0

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 21/35



Math 263, Gaussian processes

For the covariance part, suppose s< t. Then

Cov(Z(s), Z(1) =E(Z(s)Z(1))

S t
:E(f X(u)duf X(v)dv)
0 0
s t
:E(ffX(u)X(v)dvdu)
o Jo
N t
=f f EX(uw)X((v)dvdu
0 Jo
N t
:f [ min(u, v)dvdu
0o Jo
:Sz(f_f),
2 6
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Math 263, Gaussian processes

Gaussian process regression

Gaussian processes provide a way to model the probability distribution of
functions X : [0,00) — R (which are regarded as sampled trajectories of a
Gaussian process):

X() ~ GP(u(),x(,-)

That is, for any finite number of sampled locations #, t,..., t; >0, the
restriction of the function to those fixed locations is assumed to have a
multivariate normal distribution:

X =(X(t), X(£2),..., X(tn)) " ~ Nt 1<i<n, (K (ti, t)1<i,j<n)
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Math 263, Gaussian processes

We assume =0 and first consider the squared exponential kernel function
kse(t, t) =exp(~|t—t'|2/27%)

Functions drawn from such a Gaussian process will tend to be distributed
around zero and “locally smooth”with high probability; i.e.,

= nearby function values are highly correlated, and
= the correlation drops off as a function of distance in the input space.

This can be thought of as a prior distribution for functions in the context
of Bayesian inference.
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‘Samples Tom GP Wih K2 = exp(—r= (2712 t2u = 0500000 ‘Sangies Tom GP Wi KK.2) = exp—2” 2"t G = 2000000 ‘Sampies Tom GP win KxZ) = expi={p=z (271 tau = 10.000000
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Figure 2: Samples from a zero-mean Gaussian process prior with kgg (-, -) covariance function,
using (a) 7 = 0.5, (b) 7 = 2, and (¢) 7 = 10. Note that as the bandwidth parameter
increases, then points which are farther away will have higher correlations than before, and
hence the sampled functions tend to be smoother overall.
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Math 263, Gaussian processes

Now consider the regression setting where we have a set of (noiseless)
observations (s;, x;),i =1,...,m, from some unknown function.

Given new locations t;,i =1,...,n, the goal is to predict the values of the

function at those locations.
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Math 263, Gaussian processes

This turns out to be equivalent to finding the conditional distribution of
X(t1),..., X(ty) given X(s1) =X1,..., X(Sm) = Xm.

First, the union of the two sets of random variables have a joint multivariate
normal distribution

Z(tt) z(ts)
(X(11)y..., X(tn), X(s51),..., X(sm)) ~ N(0,X), ZX= .

(s  »(s)

It follows that

X(tl),...,X(tn) | X(S]) = xly---:X(sm) =Xm
~ N(z(”) (269) 'k, 20— 309 (5697 Z(”))
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Math 263, Gaussian processes

Thus, our prediction would be

BIX (8,0, X (£) | X(51) = X1, -0y X($0) = %] = 209 (269) '
See the figure below for a demonstration.
Prior

Posterior Prediction with Uncertainty

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 29/35



Math 263, Gaussian processes

Remark. Special cases:

= m=n=1:

L m—l,l’l>1

E[X(£),..., X(t,) | X(s) = x] = (e"fl‘s'z’”z,...,e‘”ﬂ‘s'z’ZTZ)x

» m=2,n=1:

E[X (1) | X(s1) = x1, X(s2) = x2]
e —e 202\ 1
_(e—lt—sllzlzr2 e—lt—52|2/2-[2) 1 e Isi—s:I°/2T x1
- ’ e—IS2—S1|2/212 1 %)
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Remark. When having independent N(0,02) noise, the formula becomes

ELX(£1), . X () | X(51) = X1, ..., X(Sy) = Xpn] = 209 (269 4 021) ' x.
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Figure 3: Gausslan process regression using a zero-mean Gaussian process prior with kgg(-, -)
covariance function (where 7 = 0.1), with noise level ¢ = 1, and (a) m = 10, (b) m = 20, and
(¢) m = 40 training examples. The blue line denotes the mean of the posterior predictive
distribution, and the green shaded region denotes the 95% confidence region based on the
model’s variance estimates. As the number of training examples increases, the size of the
confidence region shrinks to reflect the diminishing uncertainty in the model estimates. Note
also that in panel (a), the 95% confidence region shrinks near training points but is much
larger far away from training points, as one would expect.
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A MATLAB demonstration

https://www.mathworks.com/help/stats/gaussian-process-regression-models.html
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Comments on GP regression

= Nonparametric (lazy learning)
» Flexible, powerful

= Computationally intensive for high dimensional data (overfitting
could occur as well).
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Further learning on GP regression

= Stanford CS 229 Lecture Notes?
= Gaussian Processes for Machine Learning (textbook)?

» The Gaussian Processes Website3

1ht‘cp ://cs229.stanford.edu/section/cs229-gaussian_processes.pdf
2http ://www.gaussianprocess.org/gpml/chapters/RW. pdf
3http: //www.gaussianprocess.org
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