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Data clustering
Clustering is an unsupervised learning task in machine learning.

Problem 0.1. Given a set of objects
and a similarity measure, partition
the data set into k disjoint subsets
(i.e., clusters) such that

= objects in the same cluster are

similar to each other;

= objects in different clusters are
generally not similar.

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 4/51



Math 263, Spectral Clustering

We often represent such information
via an undirected, weighted graph,
called similarity graph:

= Nodes represent the objects to
be clustered;

= Edges connect similar objects
(and the weights on them in-
dicate the level of similarity).

Accordingly, clustering is converted
to a graph partitioning problem.
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Def 0.1. Mathematically, an undirected, weighted graph ¢ = (V, E,W) is
a structure that has the following components:

= vertex set V ={vy,..., vy}
= edge set E = {e;}
= weight matrix W= (w;)

An edge exists between two vertices i, j if and only if w;; >0.
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Remark. A similarity graph is uniquely defined by a given weight matrix.
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How to construct similarity graphs on vector data

Given a data set xj,...,X,, € R%, we can construct a similarity graph on it
in one of the following ways:

= ¢-neighborhood graph:

1, if ||Xl‘—X]'|| <e
wij = .
0, otherwise
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e-ball graph ENN graph (k = 3)
= kNN graph:

1, ifx;e kNN(Xj) Or X; € KNN(x;)
Wi =
Y 0, otherwise

where kKNN(x) represents the k nearest neighbors set of x in V.
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» mutual kNN graph:

1, if X; € ICNN(XJ') and X € kNN(Xl')
w‘ s =
& 0, otherwise

» Gaussian similarity graph (fully connected):

Ixixjl?
wij =€ 202

where o >0 is a parameter to be set by the user.
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Given an undirected, weighted graph
¢ = (V,E,W), define

v,eV:

|
|
|
|
|
|
= the degree of a single vertex ! node 7
|
|
|
|
|

diz Z LUl'j ————————————————————

Jjev

» and also the degree matrix:

Note that d; measures the connec-

_ . nxn
D =diag(d,,...,dn) €R tivity of node i in the graph: The
= diag(W1). larger the degree, the more strongly

connected the node.
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For example, the degree matrix associated with the previous graph is

0.8 0.8 1.6
0.8 0.8 1.6
W=10.8 0.8 0.1 — D= 1.7
0.1 0.9 1.0
0.9 0.9
0.8 0.8
0.9
0.8 0.1
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For any subset Ac V, define

1, i€A;
1A:(fly---;fn)r ﬁ: )
0, i¢A
|A| = # vertices in A
Vol(4) = ) d;
i€eA

The first quantity is an indicator variable for the subgraph A, and the last
two are two different measures of the sizes of A.
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We have already shown that a Markov chain can be induced by any
undirected, weighted graph ¢ = (V,E,W) by letting S =V (state space)
and P=D"'W (transition matrix), i.e.,

Wi
pij = 7”, for all (connected) nodes je V.
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Let ¢ be an undirected, weighted graph with weight matrix W and degree
matrix D = diag(W-1).

Def 0.2. The unnormalized graph Laplacian is defined as

— Wi , i: ';
L=D-W, éij _ Zk;ﬁz ik J
—Wij, i#]
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Example 0.2. Determine the graph Laplacian of the following graph:

0.8 0.1

Answer:
1.6 -0.8 -0.8
-08 16 -0.8
L=|-08 -08 17 -0.1
-0.1 1 -0.9
-09 0.9

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 16/51



Math 263, Spectral Clustering

The graph Laplacian has many interesting properties.

Theorem 0.1. Let Le R™™" represent a graph Laplacian. Then
(1) L is symmetric (thus all the eigenvalues are real).

(2) All the rows (and columns) sum to 0, i.e., L1 =0. This implies that
L has a eigenvalue 0 with eigenvector 1.

(3) For every vector fe R we have

1 n
fLf= > Y wij(fi- i)

i,j=1
This implies that L is positive semidefinite and accordingly, its
eigenvalues are all nonnegative: 0=1; <Ay <---<A,.
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(4) The algebraic multiplicity of the eigenvalue 0 equals the number of
connected components in the graph.

Proof. Properties (1) and (2) are obvious, so we only prove the last two.

(3) By direct calculation,
n
> wij(fi= [ = wiiff+Y wijfi —2) wijfifj
i,j=1 i,j i,j i,j
=Y diff + X diff -2} wijfif;
i J ij
= 2fTDf - 2fTWf = 2fT Lf.
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(4) Let v be any eigenvector of L corresponding to eigenvalue 0, i.e.,
Lv=0-v=0. Then

1 n
OZVTLVZ— Z wij(v,-—vj)z
ij=1
It follows that
wij(vi—vj)*=0, Vi, j

From this we obtain that v; = v; whenever w;; >0 (if there is an
edge between i, j).
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Therefore, v is piecewise constant on the connected components
Al,...,Ak, i.e.,

k
V= Z CilAi-
i=1

In particular, 14,,...,14, are (linearly independent) eigenvectors.

The geometric (and also algebraic) multiplicity of eigenvalue 0 is
thus equal to the number of connected components.
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Example 0.3. The previous graph is connected. The graph Laplacian has
eigenvalues

A1 =0, 1, =0.0788, A3 =1.8465, 14 =2.4000, A5 =2.4747.
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Example 0.4. Consider the following modified graph with two connected

components:

T
© O o o ©
© O ©
© O O  »
o © O © o
o v ©O O O

It can be shown that
det(AI-L) = A(A—2.4)%> - A(1 - 1.8).

Thus, the unnormalized graph Laplacian has a repeated eigenvalue 0, with
multiplicity 2 (which is the number of connected components).
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We next define two normalized graph Laplacians.

Def 0.3.
Lw=D'L=I-D'W=I-P;
isym —p 12 p12 _1_p 2wp~1/2
Remark.

» Lwl=D'L)1=D'(L1)=D"'0=0. This shows that Ly, has an
identical row sum of zero. Moreover, L has an eigenvalue of 0
with corresponding eigenvector 1.
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» Lgym is symmetric while Ly is not, but they are similar matrices:
Ly =D"2Lgy,D!2,
Thus, they have the same eigenvalues (but different eigenvectors).

. isym is also positive semidefinite (but Ly is not):

with the multiplicity of the zero eigenvalue equal to the number of
connected components in the graph.
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= A is an eigenvalue of Ly with associated eigenvector v if and only
if 1—A is an eigenvalue of P with the same eigenvector v:

Lwv=Av  ifand onlyif Pv=(1-A)v.

This shows that the largest eigenvalue of P is 1 (with its multiplicity
equal to the number of connected components of the undirected

graph).
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Example 0.5. For the connected graph in the preceding examples, the
two normalized graph Laplacians, Lrw, Lsym, have eigenvalues

A1 =0, 12 =0.0693, A3 =1.4773, 14 =1.5000, A5=1.9534.
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For any two subsets A,B c V, define

W(AB = ) wjj
i€A, jeB

If B= A, then it is called a cut

Cut(A,A)=WA A= Y w;
i€A, je¢A

0.8 0.8
/A\ 0.9

0.8 0.1
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Another special case of W(A, B) is when B=V:

WA V)= Y w;j=) di=Vol(A)
i€A, jeV i€eA

A collection of subsets Aj,..., A c V is called a partition of V if
AyU---UAL =YV, and AiﬂAj=¢, Vi#]j

For a partition of size k=3, the cut is defined as

1& -
Cut(Ar, ..., Ap) = Y WAL A).
i=1
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The Normalized Cut (NCut) algorithm

Given a similarity graph ¢ ={V, E,W} to be partitioned into two parts, Shi
and Malik (2000) proposed to perform 2-way spectral clustering by solving
def 1 1

min NCut(A, B) = Cut(A, B) + .
%gfg Vol(A) Vol(B)
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Remark. To minimize the NCut function, we need to
= minimize the cut,
= maximize the volume of each subgraph

Thus, we are seeking a balanced cut with minimal loss of edge weights.

Remark. If |A|,|B| are used to measure the sizes of the clusters instead,
then it is called ratio cut:

1 1
RatioCut(A, B) = Cut(A, B) (— + —)
Al |B|
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We show that the normalized cut criterion can be expressed as a Rayleigh
quotient in terms of the graph Laplacian.

Theorem 0.2. For any similarity graph ¢ = {V, E,W} and partition AUB =1V,
we have

NCut(a, B = S X
T xTpx’
where
1 .
1 1 Vol(A)’ ieA
X= 14— 1, x;=4 Vol
Vol(A) 4 Vo) B

-1 .
Vol L€B

:
Dr. Guangliang Chen | Mathematics & Statistics, San José State University
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Proof. By direct calculation:
T 1 2
x Ix= —Zw,-j(xi—xj)
2 i

=ZWij(1 1)2

—
icAjeB Vol(A)  Vol(B)

2
=Cut(A,B)( ! + ! )
Vol(4) Vol(B)

1 1
T 2
x Dx= dixs = di- —— + d: -
; i ,EZA " Vol(A)2 ,EZB " Vol(B)2
1 1
+

~ Vol(4)  Vol(B)
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Remark. The vector x is completely defined by the partition, containing
only two distinct values and satisfying a hidden constraint:

x'D1=0.

To see the last one, write

x'D1= Zx,-d,
i

Y di=1-1=0

ZVOl(A),.EZA a Vol(B) =

The vector x also uniquely defines the partition. Thus, finding the optimal
partition is equivalent to finding the minimizer x.
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We have arrived at the following equivalent problem:

xT1x

min T
xefa,—b}": X' Dx
x'D1=0

This problem is NP-hard, so we solve a relaxed problem instead:

. xTLx
min ——.
x#0eR” X+ Dx
x'D1=0

Theorem 0.3. A minimizer of the above relaxed problem is given by the
second smallest eigenvector of Lyy: LiwX = AoX.

(In terms of P=D"'W, the minimizer x is the second largest eigenvector)
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Proof. Define y=D'/?x. Then the above problem can be rewritten as

. ;?[i)rlllezo yT;+};,my — Rayleigh quotient
Note that D/21 is an eigenvector of Lgym corresponding to eigenvalue 0:
Lsym-D'?1=D"?L1=0=0-D'?1
Thus, the minimizer y is given by the second smallest eigenvector of isym:
ijsymS’: Aay.

In terms of x, this equation becomes

LsymD'/*x=1,D"?x, or equivalently, Lnx=1ox.
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0.8 0.8
0.9

Example 0.6. Consider the graph again: 0.8 0.1

The second largest eigenvector of P (also the second smallest eigenvector
of Lry) is
vy = [.2594,.2594,.2235, —.6152, —.6610] ..

0.5
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Algorithm 1 2-way NCut (Shi and Malik, 2000)
Input: Data X = X1,...,X,} cR? scale parameter o
Output: A bipartition of X=C,uC,

Steps:

1: Construct a weighted graph by assigning weights

IIX,'*XJ'H2
Wij =e 202

2: Find the second largest eigenvector v, of P=D~1/2W.
3: Assign labels based on the sign of the coordinates of v,
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Remark. When there are k >2 clusters in the data, one can apply 2-way
NCut repeatedly until a total of k clusters have been found.

Alternatively, one can extend the 2-way NCut algorithm to deal with k>2
clusters as follows:

» Step 2 — find the largest eigenvectors v,...,vi of P to form an
embedding matrix Y = [vy,...,vi] e R?**~D  and

= Step 3 — apply the kmeans algorithm to group the rows of Y (treated
as new coordinates of the original data) into k clusters.
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Demonstrations
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Comments on spectral clustering

Spectral clustering is simple, powerful and highly accurate, achieving
state-of-the-art results in many applications:

= Image segmentation

= Image clustering

» Document clustering

» Community detection in social networks

However, a significant drawback is its O(n?d) complexity when having
large data sets in high dimensions.
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There has been a considerable amount of research to develop fast spectral
clustering algorithms with O(nd) complexity. A few examples are

= K. Pham and G. Chen. Large-scale Spectral Clustering using Diffusion
Coordinates on Landmark-based Bipartite Graphs. The 12th Workshop on
Graph-based Natural Language Processing (TextGraphs-12), New Orleans,
Louisiana, June 2018

= G. Chen. "Scalable Spectral Clustering with Cosine Similarity". The 24th
International Conference on Pattern Recognition (ICPR), Beijing, China,
August 2018

= G. Chen. "A General Framework for Scalable Spectral Clustering Based on
Document Models". Pattern Recognition Letters, 125: 488-493, July 2019
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A matrix perturbation perspective

Ng, Jordan and Weiss (2001) proposed a different version of spectral
clustering by using the top k eigenvectors vy,vs,...,vi of W (instead of P)

Lw=D'L=I-D'W=I-P;

and then applying the kmeans algorithm to the rows of Y= [vy,vs,...,v¢] €
R™¥ to find k clusters.

They then justified the algorithm by viewing W as a noisy version of a clean,
block-diagonal W (with each block corresponding to a distinct cluster).
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A random walk perspective

Consider the Markov chain defined on the similarity graph ¢ ={V, E,W},
with transition matrix P=D"1W.

The chain is finite, and if the graph is connected, then the Markov chain
is irreducible and thus also positive recurrent. Accordingly, it possesses a
unique stationary distribution.

T = (1), where m; =d;/Vol(V).

If the graph is also non-bipartite, then the chain always converges to the
above stationary distribution.

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 43/51



Math 263, Spectral Clustering

Theorem 0.4. Let ¢ ={V,E,W} be connected but non-bipartite. Assume
that we run the random walk {X;,r=0,1,2,...} starting with Xj in the
stationary distribution 7. Then

NCut(A4,A)=P(X;€ Al Xpe A)+P(X € A| Xy € A).

0.8 0.8
/\ 0.9
L . ]

0.8 0.1
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Proof. First, for any subset AcV,

PXpeAXi€eA)= Y PXo=i,X1=])

icA jeA
= ) PXi=jlXo=i)P(Xo=1)
i€A jeA

wij d;
= 2 piymi= )
icA jeA i€A, jeA d; Vol(V)
= Cut(A, A).
Vol(v) A
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It follows that

. P(X;€A Xpe A) Cut(4,A)/Vol(V) Cut(4, A)
P(X;€eA|Xp€ A) = = =
P(Xp € A) Vol(A)/Vol(V) Vol(A)

Similarly, we can show that

_ Cut(4,A)
P(X1€A|Xp€ A) = ———.
Vol(A)
Combining the two equations together would complete the proof. O
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Let G=(V,E,W) be a connected, undirected graph. The induced Markov
chain has state space S=V and transition matrix P=D"'W.

Using the random walk perspective, one can define two kinds of distances
between the vertices of the graph:

= Diffusion distance!: Define based on powers of the transition
matrix, i.e., P’

= Commute distance?: Defined based on the pseudoinverse of the
graph Laplacian, i.e., L

1ht:tps ://www.sciencedirect.com/science/article/pii/S1063520306000546
2https://arxiv.org/pdf/0711.0189.pdf; see page 15
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Let 1=A;>A,=---= A, be the eigen-
values of P = D™!W, with associated
eigenvectors 1 =vy,vy,...,v,. The t-
step diffusion distance between ver-
tices i and j is

n
Dy(i, ) =/ 2 A3 v (i) =ve(j))? ;
(=2 P

This is equal to the Euclidean distance |,

on the embedding space y A

i— [AEVZ(l)r)A';l:lvn(l)]

- ono!
25 2 5 4 05 0 05 1 15 2

Note that the columns can be truncated (b) £ =64

for reduced dimensionality.
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The commute distance c;; (also called resistance distance) between two
vertices i, j € V of the graph is the expected time it takes the random walk
to travel from one vertex to the other vertex and back:

cij=mij+mji, mi;=E|\min{X,=j}| Xo=1

Unlike the shortest-path distance, the commute distance c;; is small only
when there are many different short ways to get from one vertex to another.

On the other hand, it can avoid short-circuiting and is thus robust to a
small subset of edges.
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Theorem 0.5. For any connected, undirected graph G = (V,E,W), the
commute time between any two vertices i,je V is

cij =Vol(V)- (¢}, —2¢],+ ¢} )
=Vol(V)-(e;—e;) L (e; —e))
where
» L= ((;fj): Moore-Penrose pseudoinverse3 of the graph Laplacian L;

= ¢;: the ith canonical basis vector for R".

3https ://wwu.sjsu.edu/faculty/guangliang.chen/Math2560/1lec6ginverse.
pdf
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Demonstration on the toy graph:

>> L_dag = pinv(L)
C = diag(L_dag) + diag(L_dag)' - 2 * L_dag;
C = C x sum(d)
L_dag =
2.0778 1.6611 1.4944 -2.5056 -2.7278
1.6611 2.0778 1.4944 -2.5056 -2.7278
1.4944 1.4944 1.7444 -2.2556 -2.4778
-2.5056 -2.5056 -2.2556 3.7444 3.5222
-2.7278 -2.7278 -2.4778 3.5222 4,4111
C =
0 5.6667 5.6667 73.6667 81.2222
5.6667 0 5.6667 73.6667 81.2222
5.6667 5.6667 0 68.0000 75.5556
73.6667 73.6667 68.0000 0 7.5556
81.2222 81.2222  75.5556 7.5556 0

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 51/51



