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Data clustering
Clustering is an unsupervised learning task in machine learning.

Problem 0.1. Given a set of objects
and a similarity measure, partition
the data set into k disjoint subsets
(i.e., clusters) such that

• objects in the same cluster are
similar to each other;

• objects in different clusters are
generally not similar.
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We often represent such information
via an undirected, weighted graph,
called similarity graph:

• Nodes represent the objects to
be clustered;

• Edges connect similar objects
(and the weights on them in-
dicate the level of similarity).

Accordingly, clustering is converted
to a graph partitioning problem.
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Def 0.1. Mathematically, an undirected, weighted graph G = (V ,E ,W) is
a structure that has the following components:

• vertex set V = {v1, . . . , vn}

• edge set E = {ei j }

• weight matrix W = (wi j )

An edge exists between two vertices i , j if and only if wi j > 0.
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Remark. A similarity graph is uniquely defined by a given weight matrix.
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How to construct similarity graphs on vector data

Given a data set x1, . . . ,xn ∈Rd , we can construct a similarity graph on it
in one of the following ways:

• ε-neighborhood graph:

wi j =
1, if ‖xi −x j‖ < ε

0, otherwise
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ǫ-ball graph kNN graph (k = 3)

• kNN graph:

wi j =
1, if xi ∈ kNN(x j ) or x j ∈ kNN(xi )

0, otherwise

where kNN(x) represents the k nearest neighbors set of x in V .
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• mutual kNN graph:

wi j =
1, if xi ∈ kNN(x j ) and x j ∈ kNN(xi )

0, otherwise

• Gaussian similarity graph (fully connected):

wi j = e−
‖xi −x j ‖2

2σ2

where σ> 0 is a parameter to be set by the user.
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Given an undirected, weighted graph
G = (V ,E ,W), define

• the degree of a single vertex
vi ∈V :

di =
∑
j∈V

wi j

• and also the degree matrix:

D = diag(d1, . . . ,dn) ∈Rn×n

= diag(W1).

Note that di measures the connec-
tivity of node i in the graph: The
larger the degree, the more strongly
connected the node.
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For example, the degree matrix associated with the previous graph is

W =


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For any subset A ⊂V , define

1A = ( f1, . . . , fn), fi =
1, i ∈ A;

0, i ∉ A

|A| =# vertices in A

Vol(A) = ∑
i∈A

di

The first quantity is an indicator variable for the subgraph A, and the last
two are two different measures of the sizes of A.
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We have already shown that a Markov chain can be induced by any
undirected, weighted graph G = (V ,E ,W) by letting S = V (state space)
and P = D−1W (transition matrix), i.e.,

pi j =
wi j

di
, for all (connected) nodes j ∈V.
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Let G be an undirected, weighted graph with weight matrix W and degree
matrix D = diag(W ·1).

Def 0.2. The unnormalized graph Laplacian is defined as

L = D−W, `i j =
−∑

k 6=i wi k , i = j ;

−wi j , i 6= j
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Example 0.2. Determine the graph Laplacian of the following graph:

b

b b b b

0.8 0.8

0.8 0.1

0.9

Answer:

L =


1.6 −0.8 −0.8

−0.8 1.6 −0.8

−0.8 −0.8 1.7 −0.1

−0.1 1 −0.9

−0.9 0.9


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The graph Laplacian has many interesting properties.
Theorem 0.1. Let L ∈Rn×n represent a graph Laplacian. Then

(1) L is symmetric (thus all the eigenvalues are real).

(2) All the rows (and columns) sum to 0, i.e., L1 = 0. This implies that
L has a eigenvalue 0 with eigenvector 1.

(3) For every vector f ∈Rd we have

fT Lf = 1

2

n∑
i , j=1

wi j ( fi − f j )2.

This implies that L is positive semidefinite and accordingly, its
eigenvalues are all nonnegative: 0 =λ1 ≤λ2 ≤ ·· · ≤λn .
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(4) The algebraic multiplicity of the eigenvalue 0 equals the number of
connected components in the graph.

Proof. Properties (1) and (2) are obvious, so we only prove the last two.

(3) By direct calculation,
n∑

i , j=1
wi j ( fi − f j )2 =∑

i , j
wi j f 2

i +∑
i , j

wi j f 2
j −2

∑
i , j

wi j fi f j

=∑
i

di f 2
i +∑

j
d j f 2

j −2
∑
i , j

wi j fi f j

= 2fT Df−2fT Wf = 2fT Lf.
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(4) Let v be any eigenvector of L corresponding to eigenvalue 0, i.e.,
Lv = 0 ·v = 0. Then

0 = vT Lv = 1

2

n∑
i , j=1

wi j (vi − v j )2

It follows that
wi j (vi − v j )2 = 0, ∀ i , j

From this we obtain that vi = v j whenever wi j > 0 (if there is an
edge between i , j ).
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Therefore, v is piecewise constant on the connected components
A1, . . . , Ak , i.e.,

v =
k∑

i=1
ci 1Ai .

In particular, 1A1 , . . . ,1Ak are (linearly independent) eigenvectors.

The geometric (and also algebraic) multiplicity of eigenvalue 0 is
thus equal to the number of connected components.
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Example 0.3. The previous graph is connected. The graph Laplacian has
eigenvalues

λ1 = 0, λ2 = 0.0788, λ3 = 1.8465, λ4 = 2.4000, λ5 = 2.4747.
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Example 0.4. Consider the following modified graph with two connected
components:

W =


0 .8 .8 0 0

.8 0 .8 0 0

.8 .8 0 0 0

0 0 0 0 .9

0 0 0 .9 0


It can be shown that

det(λI−L) =λ(λ−2.4)2 ·λ(λ−1.8).

Thus, the unnormalized graph Laplacian has a repeated eigenvalue 0, with
multiplicity 2 (which is the number of connected components).
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We next define two normalized graph Laplacians.

Def 0.3.

L̃rw = D−1L = I−D−1W = I−P;

L̃sym = D−1/2LD−1/2 = I−D−1/2WD−1/2.

Remark.

• L̃rw1 = (D−1L)1 = D−1(L1) = D−10 = 0. This shows that L̃rw has an
identical row sum of zero. Moreover, L̃rw has an eigenvalue of 0
with corresponding eigenvector 1.
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• L̃sym is symmetric while L̃rw is not, but they are similar matrices:

L̃rw = D−1/2L̃symD1/2.

Thus, they have the same eigenvalues (but different eigenvectors).

• L̃sym is also positive semidefinite (but L̃rw is not):

fT L̃symf = 1

2

n∑
i , j=1

wi j

(
fip
d i

− f jp
d j

)2

,

with the multiplicity of the zero eigenvalue equal to the number of
connected components in the graph.
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• λ is an eigenvalue of L̃rw with associated eigenvector v if and only
if 1−λ is an eigenvalue of P with the same eigenvector v:

L̃rwv =λv if and only if Pv = (1−λ)v.

This shows that the largest eigenvalue of P is 1 (with its multiplicity
equal to the number of connected components of the undirected
graph).
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Example 0.5. For the connected graph in the preceding examples, the
two normalized graph Laplacians, L̃rw, L̃sym, have eigenvalues

λ1 = 0, λ2 = 0.0693, λ3 = 1.4773, λ4 = 1.5000, λ5 = 1.9534.
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For any two subsets A,B ⊂V , define

W (A,B) = ∑
i∈A, j∈B

wi j

If B = Ā, then it is called a cut

Cut(A, Ā) =W (A, Ā) = ∑
i∈A, j∉A

wi j

b

b b b b

0.8 0.8

0.8 0.1

0.9
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Another special case of W (A,B) is when B =V :

W (A,V ) = ∑
i∈A, j∈V

wi j =
∑
i∈A

di = Vol(A)

A collection of subsets A1, . . . , Ak ⊂V is called a partition of V if

A1 ∪·· ·∪ Ak =V , and Ai ∩ A j =;, ∀ i 6= j

For a partition of size k ≥ 3, the cut is defined as

Cut(A1, . . . , Ak ) = 1

2

k∑
i=1

W (Ai , Āi ).
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The Normalized Cut (NCut) algorithm

Given a similarity graph G = {V ,E ,W} to be partitioned into two parts, Shi
and Malik (2000) proposed to perform 2-way spectral clustering by solving

min
A∪B=V
A∩B=;

NCut(A,B)
def= Cut(A,B)

(
1

Vol(A)
+ 1

Vol(B)

)
.
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Remark. To minimize the NCut function, we need to

• minimize the cut,

• maximize the volume of each subgraph

Thus, we are seeking a balanced cut with minimal loss of edge weights.

Remark. If |A|, |B | are used to measure the sizes of the clusters instead,
then it is called ratio cut:

RatioCut(A,B) = Cut(A,B)

(
1

|A| +
1

|B |
)
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We show that the normalized cut criterion can be expressed as a Rayleigh
quotient in terms of the graph Laplacian.
Theorem 0.2. For any similarity graph G = {V ,E ,W} and partition A∪B =V ,
we have

NCut(A,B) = xT Lx

xT Dx
,

where

x = 1

Vol(A)
1A − 1

Vol(B)
1B , xi =


1

Vol(A) , i ∈ A
−1

Vol(B) , i ∈ B
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Proof. By direct calculation:

xT Lx = 1

2

∑
i , j

wi j (xi −x j )2

= ∑
i∈A, j∈B

wi j

(
1

Vol(A)
+ 1

Vol(B)

)2

= Cut(A,B)

(
1

Vol(A)
+ 1

Vol(B)

)2

xT Dx =∑
i

di x2
i = ∑

i∈A
di · 1

Vol(A)2 + ∑
i∈B

di · 1

Vol(B)2

= 1

Vol(A)
+ 1

Vol(B)
.
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Remark. The vector x is completely defined by the partition, containing
only two distinct values and satisfying a hidden constraint:

xT D1 = 0.

To see the last one, write

xT D1 =∑
i

xi di = 1

Vol(A)

∑
i∈A

di − 1

Vol(B)

∑
i∈B

di = 1−1 = 0.

The vector x also uniquely defines the partition. Thus, finding the optimal
partition is equivalent to finding the minimizer x.
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We have arrived at the following equivalent problem:

min
x∈{a,−b}n :

xT D1=0

xT Lx

xT Dx
.

This problem is NP-hard, so we solve a relaxed problem instead:

min
x6=0∈Rn

xT D1=0

xT Lx

xT Dx
.

Theorem 0.3. A minimizer of the above relaxed problem is given by the
second smallest eigenvector of L̃rw: L̃rw x =λ2x.

(In terms of P = D−1W, the minimizer x is the second largest eigenvector)
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Proof. Define y = D1/2x. Then the above problem can be rewritten as

min
y6=0,yT D1/21=0

yT L̃symy

yT y
. ←−Rayleigh quotient

Note that D1/21 is an eigenvector of L̃sym corresponding to eigenvalue 0:

L̃sym ·D1/21 = D−1/2L1 = 0 = 0 ·D1/21

Thus, the minimizer y is given by the second smallest eigenvector of L̃sym:

L̃symy =λ2y.

In terms of x, this equation becomes

L̃symD1/2x =λ2D1/2x, or equivalently, L̃rwx =λ2x.
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Example 0.6. Consider the graph again:

b

b b b b

0.8 0.8

0.8 0.1

0.9

The second largest eigenvector of P (also the second smallest eigenvector
of L̃rw) is

v2 = [.2594, .2594, .2235,−.6152,−.6610]T .
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Algorithm 1 2-way NCut (Shi and Malik, 2000)
Input: Data X = {x1, . . . ,xn} ⊂Rd , scale parameter σ
Output: A bipartition of X =C1 ∪C2

Steps:
1: Construct a weighted graph by assigning weights

wi j = e−
‖xi −x j ‖2

2σ2

2: Find the second largest eigenvector v2 of P = D−1/2W.
3: Assign labels based on the sign of the coordinates of v2
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Remark. When there are k > 2 clusters in the data, one can apply 2-way
NCut repeatedly until a total of k clusters have been found.

Alternatively, one can extend the 2-way NCut algorithm to deal with k > 2

clusters as follows:

• Step 2 → find the largest eigenvectors v2, . . . ,vk of P to form an
embedding matrix Y = [v2, . . . ,vk ] ∈Rn×(k−1), and

• Step 3 → apply the kmeans algorithm to group the rows of Y (treated
as new coordinates of the original data) into k clusters.
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Demonstrations
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Comments on spectral clustering
Spectral clustering is simple, powerful and highly accurate, achieving
state-of-the-art results in many applications:

• Image segmentation

• Image clustering

• Document clustering

• Community detection in social networks

However, a significant drawback is its O(n2d) complexity when having
large data sets in high dimensions.
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There has been a considerable amount of research to develop fast spectral
clustering algorithms with O(nd) complexity. A few examples are

• K. Pham and G. Chen. Large-scale Spectral Clustering using Diffusion
Coordinates on Landmark-based Bipartite Graphs. The 12th Workshop on
Graph-based Natural Language Processing (TextGraphs-12), New Orleans,
Louisiana, June 2018

• G. Chen. "Scalable Spectral Clustering with Cosine Similarity". The 24th
International Conference on Pattern Recognition (ICPR), Beijing, China,
August 2018

• G. Chen. "A General Framework for Scalable Spectral Clustering Based on
Document Models". Pattern Recognition Letters, 125: 488-493, July 2019
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A matrix perturbation perspective
Ng, Jordan and Weiss (2001) proposed a different version of spectral
clustering by using the top k eigenvectors v1,v2, . . . ,vk of W̃ (instead of P)

L̃rw = D−1L = I−D−1W = I−P;

L̃sym = D−1/2LD−1/2 = I−D−1/2WD−1/2 = I−W̃.

and then applying the kmeans algorithm to the rows of Y = [v1,v2, . . . ,vk ] ∈
Rn×k to find k clusters.

They then justified the algorithm by viewing W̃ as a noisy version of a clean,
block-diagonal W (with each block corresponding to a distinct cluster).
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A random walk perspective
Consider the Markov chain defined on the similarity graph G = {V ,E ,W},
with transition matrix P = D−1W.

The chain is finite, and if the graph is connected, then the Markov chain
is irreducible and thus also positive recurrent. Accordingly, it possesses a
unique stationary distribution.

π= (πi ), where πi = di /Vol(V ).

If the graph is also non-bipartite, then the chain always converges to the
above stationary distribution.
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Theorem 0.4. Let G = {V ,E ,W} be connected but non-bipartite. Assume
that we run the random walk {X t , t = 0,1,2, . . .} starting with X0 in the
stationary distribution π. Then

NCut(A, Ā) = P (X1 ∈ Ā | X0 ∈ A)+P (X1 ∈ A | X0 ∈ Ā).

b

b b b b

0.8 0.8

0.8 0.1

0.9
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Proof. First, for any subset A ⊂V ,

P (X0 ∈ A, X1 ∈ Ā) = ∑
i∈A, j∈Ā

P (X0 = i , X1 = j )

= ∑
i∈A, j∈Ā

P (X1 = j | X0 = i )P (X0 = i )

= ∑
i∈A, j∈Ā

pi jπi =
∑

i∈A, j∈Ā

wi j

di

di

Vol(V )

= 1

Vol(V )
Cut(A, Ā).
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It follows that

P (X1 ∈ Ā | X0 ∈ A) = P (X1 ∈ Ā, X0 ∈ A)

P (X0 ∈ A)
= Cut(A, Ā)/Vol(V )

Vol(A)/Vol(V )
= Cut(A, Ā)

Vol(A)
.

Similarly, we can show that

P (X1 ∈ A | X0 ∈ Ā) = Cut(A, Ā)

Vol(Ā)
.

Combining the two equations together would complete the proof.
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Let G = (V ,E ,W) be a connected, undirected graph. The induced Markov
chain has state space S =V and transition matrix P = D−1W.

Using the random walk perspective, one can define two kinds of distances
between the vertices of the graph:

• Diffusion distance1: Define based on powers of the transition
matrix, i.e., Pt

• Commute distance2: Defined based on the pseudoinverse of the
graph Laplacian, i.e., L†

1https://www.sciencedirect.com/science/article/pii/S1063520306000546
2https://arxiv.org/pdf/0711.0189.pdf; see page 15
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Let 1 =λ1 >λ2 ≥ ·· · ≥λn be the eigen-
values of P = D−1W, with associated
eigenvectors 1 = v1,v2, . . . ,vn . The t-
step diffusion distance between ver-
tices i and j is

D t (i , j ) =
√

n∑
`=2

λ2t
`

(v`(i )−v`( j ))2

This is equal to the Euclidean distance
on the embedding space

i 7→ [λt
2v2(i ), . . . ,λt

n vn(i )]

Note that the columns can be truncated
for reduced dimensionality.
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The commute distance ci j (also called resistance distance) between two
vertices i , j ∈V of the graph is the expected time it takes the random walk
to travel from one vertex to the other vertex and back:

ci j = mi j +m j i , mi j =E
(
min
n≥1

{Xn = j } | X0 = i

)
Unlike the shortest-path distance, the commute distance ci j is small only
when there are many different short ways to get from one vertex to another.

On the other hand, it can avoid short-circuiting and is thus robust to a
small subset of edges.

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 49/51



Math 263, Spectral Clustering

Theorem 0.5. For any connected, undirected graph G = (V ,E ,W), the
commute time between any two vertices i , j ∈V is

ci j = Vol(V ) ·
(
`†

i i −2`†
i j +`†

j j

)
= Vol(V ) · (ei −e j )T L†(ei −e j )

where

• L† = (`†
i j ): Moore-Penrose pseudoinverse3 of the graph Laplacian L;

• ei : the i th canonical basis vector for Rn .

3https://www.sjsu.edu/faculty/guangliang.chen/Math250/lec6ginverse.
pdf
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Demonstration on the toy graph:
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