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This lecture is based on the following textbook sections:

• Sections 4.1, 4.2

Outline of the presentation

• Markov chain concepts

• t-step transition probabilities
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Recall that a stochastic process is a family of random variables, {X t , t ∈ T },
where X t measures, at time t , the aspect of a system which is of interest.

The process is called a

• discrete-time process when T is a discrete set such as Z,Z+,Z+
0 , or

• continuous-time process when T is an interval such as R+ or R+
0 .

In this lecture, we focus on discrete-time, integer-valued processes and will
introduce a probability model for the collection of random variables X t .
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Basic concepts
Let {Xn ,n = 0,1,2, . . .} be a stochastic process that takes a countable
number of possible values, which is assumed to be Z for convenience.

If Xn = i , then we say that the process is in state i (at time n).

Given the current time and state, Xn = i , and the history of the process,

Xn−1 = in−1, . . . , X1 = i1, X0 = i0

the process will move to state j at time n+1, with transition probability

P (Xn+1 = j | Xn = i , Xn−1 = in−1, . . . , X1 = i1, X0 = i0)
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Def 0.1. A discrete-time, integer-valued stochastic process {Xn}n≥0 is
called a Markov chain, or said to have the Markov property, if the
conditional distribution of any future state Xn+1, given the past states
X0, X1, . . . , Xn−1 and the present state Xn , is independent of the past states
and depends only on the current state:

P (Xn+1 = j | Xn = i , Xn−1 = in−1, . . . , X1 = i1, X0 = i0)

=P (Xn+1 = j | Xn = i )

for all n ≥ 0 and all i0, i1, . . . , in−1, i , j ∈ S.
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A Markov chain is said to be time-homogeneous, or stationary, if the
transition probabilities from one state to another state are independent of
time, i.e.,

P (Xn+1 = j | Xn = i ) = P (X1 = j | X0 = i )︸ ︷︷ ︸
pi j

for all n ≥ 0 and all i , j ∈ S.

Unless other specified, Markov chains are assumed to be time-homogeneous.
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Given a Markov chain, the transition probabilities form a matrix, P = (pi j ),
called the transition matrix.

For example, when S = {0,1, . . . , N }, the transition matrix has the form

P =


p00 p01 · · · p0N

p10 p11 · · · p1N
... ... . . . ...

pN 0 pN 1 · · · pN N


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Transition matrices must be

• nonnegative:
pi j ≥ 0 for all i , j ∈ S

• row-stochastic (i.e., row sums are all 1):∑
j

pi j = 1, for all i ∈ S

The row-stochastic property can be represented in matrix notation

P1 = 1, where 1 = (1,1, . . . ,1)T .

This shows that 1 is an eigenvector of P corresponding to eigenvalue 1.
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Def 0.2 (Random walk). A Markov chain {Xn ,n ≥ 0} with state space
S =Z is called a random walk if it has the following transition probabilities

pi ,i+1 = p = 1−pi ,i−1, for all i , j ∈ S

that is,

pi j =


p, j = i +1

1−p j = i −1

0, otherwise

, for all i ∈ S

-1 1
p

1− p
0-2 2

b b bbbb

It is called a symmetric random walk if p = 1
2 .
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Example 0.1 (Gambler’s Ruin). This can be modeled as a Markov chain
with state space S = {0,1,2, . . . , N } and transition probabilities

Pi ,i+1 = p = 1−Pi ,i−1, 1 ≤ i ≤ N −1

P00 = 1 = PN N (absorbing states)

2 N0 1
p ppp

1− p 1− p1− p1− p

1 1

It is a random walk on a finite state space and with two absorbing barriers.
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The transition matrix of such a process has the following form (when
N = 5):

P =



1

1−p 0 p

1−p 0 p

1−p 0 p

1−p 0 p

1


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Example 0.2 (Social mobility). Let
Xn be a family’s social class: 1
(lower), 2 (middle), 3 (upper) in the
nth generation. We can model this
process as a Markov chain with cer-
tain kind of transition probabilities
such as

P =

0.8 0.1 0.1

0.2 0.6 0.2

0.3 0.3 0.4


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Application to clustering
Markov chains can be used for data clustering, which is an unsupervised
learning task in machine learning. Its informal formulation is the following.

Problem 0.3. Given a set of objects
and a similarity measure, partition
the data set into k disjoint subsets
(i.e., clusters) such that

• objects in the same cluster are
similar to each other;

• objects in different clusters are
generally not similar.

We often represent such information
via an undirected, weighted graph,
called similarity graph:

b

b b b b

0.8 0.8

0.8 0.1

0.9

Accordingly, clustering is equiva-
lent to graph partitioning.
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Remark. An undirected, weighted graph G = (V ,E ,W) is a mathematical
object that has the following components:

• vertex set V = {v1, . . . , vn}

• edge set E = {ei j }

• weight matrix W = (wi j )

Note that an edge exists between two vertices i , j if and only if wi j > 0.
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Remark. A similarity graph is uniquely defined by a given weight matrix.

W =


0.8 0.8

0.8 0.8

0.8 0.8 0.1

0.1 0.9

0.9


b

b b b b

0.8 0.8

0.8 0.1

0.9
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Given an undirected, weighted graph
G = (V ,E ,W), define

• the degree of a single vertex
vi ∈V :

di =
∑
j∈V

wi j

• and also the degree matrix:

D = diag(d1, . . . ,dn) ∈Rn×n

= diag(W1).

Note that di measures the connec-
tivity of node i in the graph: The
larger the degree, the more strongly
connected the node.

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 16/35



Math 263, Markov Chains

For example, the degree matrix associated with the previous graph is

W =


0.8 0.8

0.8 0.8

0.8 0.8 0.1

0.1 0.9

0.9

 −→ D =


1.6

1.6

1.7

1.0

0.9


b

b b b b

0.8 0.8

0.8 0.1

0.9
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Now, suppose that a person initially stands on some vertex of the graph
(say X0 = i) and moves from vertex to vertex along the edges randomly
according to the following transition probabilities:

pi j =
wi j

di
, for all (connected) nodes j ∈V.

Remark. Let P = (pi j ). Then

• P = D−1W,

• P is nonnegative (P ≥ 0),

• P is row-stochastic (P1 = 1).
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Let Xn be the location of the person in the graph after n steps.

Then {Xn : n = 0,1,2, . . .} is a Markov chain with

• state space S =V , and

• transition matrix P = (pi j ).

Under this model, clusters are subsets of states where one spends a
long time in each of them and seldom jumps between them.
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In the toy example, the state space of the Markov chain is S = {1,2,3,4,5}

and the transition matrix is

W =



0.8 0.8

0.8 0.8

0.8 0.8 0.1

0.1 0.9

0.9


−→ P =



1
2

1
2

1
2

1
2

8
17

8
17

1
17

1
10

9
10

1


b

b b b b

0.8 0.8

0.8 0.1

0.9
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t-step transition probabilities

Consider a Markov chain with state space S. For any i , j ∈ S and t ≥ 0,
the t-step transition probability from i to j is defined as

p(t )
i j = P (X t = j | X0 = i ).

Define also the t-step transition matrix

P(t ) =
(
p(t )

i j

)
.

Clearly, P(1) = P (one-step transition matrix). What about t ≥ 2?
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Theorem 0.1 (Chapman-Kolmogorov Equations). For any n,m ∈Z+
0 ,

p(n+m)
i j = ∑

k∈S
p(n)

i k p(m)
k j , i , j ∈ S.

This implies that
P(n+m) = P(n)P(m).

Proof. By the law of total probability,

p(n+m)
i j = P (Xn+m = j | X0 = i )

= ∑
k∈S

P (Xn+m = j | Xn = k, X0 = i///////)P (Xn = k | X0 = i )

= ∑
k∈S

p(m)
k j p(n)

i k .
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By mathematical induction, we can obtain the following result.
Corollary 0.2. P(t ) = Pt for any integer t ≥ 1.

Remark. P(t ) is also nonnegative and row-stochastic:

P(t )1 = Pt 1 = P · · ·P · (P︸ ︷︷ ︸
t copies

·1) = P · · ·P︸ ︷︷ ︸
t −1 copies

· 1 = 1
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Example 0.4 (Social mobility, cont’d).

P2 =

.69 .17 .14

.34 .44 .22

.42 .33 .25

 , P3 =

.628 .213 .159

.426 .364 .210

.477 .315 .208


How to interpret them?
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Example 0.5 (modified from Example 4.10, page 198). An urn always
contains 2 balls. Ball colors are red and blue. At each stage a ball is
randomly chosen and then replaced by a new ball, which with probability
0.8 is the same color as the ball it replaces, and with probability 0.2 is the
opposite color. If initially both balls are red, find the probability that the
third ball selected is red.
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Solution. Let Xn be the number of red balls in the urn after n steps (and
X0 = 2). Clearly, {Xn : n = 0,1,2, . . .} is a Markov chain with state space
S = {0,1,2} and transition matrix

P =

0.8 0.2 0

0.1 0.8 0.1

0 0.2 0.8

 −→ P2 =

0.66 0.32 0.02

0.16 0.68 0.16

0.02 0.32 0.66


Let R3 denote the event that the third selected ball is red. Then

P (R3 | X0 = 2) =
2∑

i=0
P (R3 | X2 = i , X0 = 2///////)P (X2 = i | X0 = 2)

=
2∑

i=0

i

2
·p(2)

2,i = 0 ·0.02+0.5 ·0.32+1 ·0.66 = 0.82.
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Example 0.6 (Example 4.11, page 199). Suppose that balls are succes-
sively distributed among 8 urns, with each ball being equally likely to be
put in any of these urns. What is the probability that there will be exactly
3 nonempty urns after 9 balls have been distributed?

Solution. Let Xn be the number of occupied urns after n steps. Clearly,
{Xn : n = 1,2, . . .} is a Markov chain with state space S = {1,2, . . . ,8} and
transition probabilities

pi ,i = i

8
, i = 1, . . . ,8

pi ,i+1 = 1− i

8
, i = 1, . . . ,7
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The resulting transition matrix is

P =



1/8 7/8

2/8 6/8

3/8 5/8

4/8 4/8

5/8 3/8

6/8 2/8

7/8 1/8

1


The desired probability is

p(8)
13 = .00756 (by software).
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Marginal distribution of Xn

To compute the marginal distributions of Xn, we need to be given the
initial distribution of the chain:

α= (αi )i∈S , αi = P (X0 = i )

where α is a row vector.

Remark. If the initial state of a chain is fixed (say i), then α= ei .
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Theorem 0.3. The marginal distribution of Xn is given by αPn (over S).

Proof. For any j ,

P (Xn = j ) =∑
i

P (Xn = j | X0 = i )P (X0 = i ) =∑
i

p(n)
i j αi .

which is just the matrix product of α and the j th column of Pn .

Remark. If α= ei for some i (i.e., the chain always starts from state i),
then the marginal distribution of Xn is given by the i th row of Pn .
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Example 0.7 (Social mobility, cont’d). Suppose the initial distribution of
the chain is α= ( 1

3 , 1
3 , 1

3 ). Then the distribution of X2 (social status after
two generations) is

αP2 =
(

1

3
,

1

3
,

1

3

).69 .17 .14

.34 .44 .22

.42 .33 .25

= (0.4833,0.3133,0.2033).
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Example 0.8 (2 balls, change color, cont’d). If the initial distribution of
the number of red balls is α= ( 1

4 , 1
2 , 1

4 ), what is the probability that the
third ball selected is red?

Solution. The marginal distribution of X2 is

αP2 =
(

1

4
,

1

2
,

1

4

)0.66 0.32 0.02

0.16 0.68 0.16

0.02 0.32 0.66

= (0.25,0.5,0.25).

It follows that

P (R3) =
2∑

i=0
P (R3 | X2 = i )P (X2 = i ) = 0 ·0.25+0.5 ·0.5+1 ·0.25 = 0.5.

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 32/35



Math 263, Markov Chains

Example 0.9 (Example 4.11, page 199). In a sequence of independent
flips of a fair coin, let N denote the number of flips until there is a run of
three consecutive heads, for example,

T H H T T H T H H H

Find P (N ≤ 8) and P (N = 8).
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Solution. Let Xn be the number of consecutive heads at the end of the
sequence from flipping a fair coin n times (and suppose the game has not
ended earlier).

After the game has ended, we will just let Xn = 3 for all n.

Then {Xn ,n = 0,1,2, . . .} is a Markov chain with state space S = {0,1,2,3},
where state i means that we are currently on a run of i consecutive heads
(and if i = 3, the experiment would just end).
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The transition matrix is

P =


1/2 1/2

1/2 1/2

1/2 1/2

1


From this, we obtain (by software) that

P (N ≤ 8) = P (X8 = 3) = p(8)
03 = 107

256

P (N = 8) = p(7)
02 ·p23 = 13

256
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