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This lecture is based on the following textbook sections:

• Sections 4.3, 4.4a

Outline of the presentation

• Recurrent / transient states

• Periodic states
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Def 0.1. Let {Xn ,n ≥ 0} be a Markov chain with state space S. State j is
said to be accessible from state i if

p(n)
i j > 0 for some n ≥ 0.

We say that two states i , j communicate if they are accessible from each
other, i.e.,

p(n)
i j > 0, p(m)

j i > 0 for some n,m ≥ 0.

and we write i ←→ j .
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Example 0.1. Are the states in the following Markov chain accessible
from each other?
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Example 0.2. Consider the random walk with two absorbing barrers 0, N :

• State 0 is accessible from any state 0 < i < N , but not the other way.
Thus, they do not communicate.

• States 1 and N −1 communicate.

2 N0 1
p ppp

1− p 1− p1− p1− p

1 1
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Theorem 0.1. Communication is an equivalence relation (among the states
of a Markov Chain):

• Reflexivity: for any state i , we have i ←→ i ;

• Symmetry: if i ←→ j , then j ←→ i

• Transitivity: if i ←→ j and j ←→ k, then i ←→ k.

This indicates that communication (as an equivalence relation) partitions
the state space into disjoint equivalence classes.
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Proof. We verify each property:

• For any state i ,

p(0)
i i = P (X0 = i | X0 = i ) = 1 > 0.

This shows that i ←→ i .

• Obvious.
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• We first show that k is accessible from i (the other direction can be
proved in the same way). Suppose that

p(n)
i j > 0, p(m)

j k > 0

for some n,m ≥ 0. Then

p(n+m)
i k =∑

`

p(n)
i` p(m)

`k ≥ p(n)
i j p(m)

j k > 0.
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Example 0.3. How many communicating classes does the following chain
have?

2 N0 1
p ppp

1− p 1− p1− p1− p

1 1
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Def 0.2. A Markov chain is said to be irreducible if it consists of only 1
communicating class, that is, all states communicate with each other.
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Def 0.3. A communicating class C of states is said to be closed if it is
not possible to leave that class (once entering it), that is,

Pi j = 0, whenever i ∈C and j ∉C .

C

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 11/38



Math 263, Classification of States

Def 0.4. A state i is said to be an absorbing state if {i } is a closed class.

i
1
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For any state i , we denote by fi i the probability that starting in state i ,
the process will ever reenter i :

fi i = P (Xn = i for some finite n | X0 = i )

= P

( ∞⋃
n=1

{Xn = i }

∣∣∣∣ X0 = i

)

Def 0.5. State i is said to be

• recurrent if fi i = 1, or

• transient if fi i < 1.
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Remark.

(1) Any recurrent state must be visited infinitely often when the chain
originates from it;

(2) Starting in a transient state i , the number of times the process will
reenter the state has a geom(1− fi i ) distribution with finite mean 1

1− fi i
.

Therefore, state i is recurrent if and only if the expected number of
time periods the process is in that state is infinity.
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Theorem 0.2. State i is recurrent if
∞∑

n=1
p(n)

i i =∞,

or transient if ∞∑
n=1

p(n)
i i <∞.
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Proof. For a fixed state i , let In = 1Xn=i for n = 1,2, . . .. Then the number
of time periods the process is in state i is

N =
∞∑

n=1
In .

It follows that

E(N | X0 = i )
∞∑

n=1
E(In | X0 = i )

=
∞∑

n=1
P (Xn = i | X0 = i )

=
∞∑

n=1
p(n)

i i .

Combining this and the remark completes the proof.
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Corollary 0.3. If state i is recurrent and i ←→ j , then j is also recurrent.

Proof. Suppose that

p(n)
i j > 0 for some n ≥ 0

and
p(m)

j i > 0 for some m ≥ 0.

Then for any k ≥ 1,
p(n+m+k)

j j ≥ p(m)
j i p(k)

i i p(n)
i j .
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Taking the sum over k yields that

∑
k

p(n+m+k)
j j ≥ p(m)

j i

(∑
k

p(k)
i i

)
p(n)

i j =∞.

This shows that j is also recurrent.

Remark. Similarly, if state i is transient and i ←→ j , then j is also
transient. This shows that in any communicating class, the states must
be all recurrent, or all transient. This further implies that the states of a
finite, irreducible Markov chain must all be recurrent.
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Example 0.4. Consider a Markov chain consisting of five states {1,2,3,4,5}

and having the following transition probability matrix

P =


.4 .3 .3

.6 .4

.5 .5

1

1


Determine which states are recurrent and which ones are transient.
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Example 0.5. Consider a random walk with state space S =Z and transi-
tion probabilities:

pi ,i+1 = p = 1−pi ,i−1, i ∈Z.

-1 1
p

1− p
0-2 2

b b bbbb

Clearly, all states communicate with each other, so they must all be
recurrent or transient. Which case is it?

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 20/38



Math 263, Classification of States

Solution. Consider state 0 for which p(n)
00 = 0 for all odd n ≥ 1. Then

∞∑
n=1

p(n)
00 =

∞∑
k=1

p(2k)
00 =

∞∑
k=1

(
2k

k

)
pk (1−p)k =

∞∑
k=1

(2k)!

(k !)2 (p(1−p))k

Using Stirling’s approximation

n! ∼p
2πnn+ 1

2 e−n

and simplifying things gives that
∞∑

n=1
p(n)

00 ∼
∞∑

n=1

(4p(1−p))n

p
πn

It diverges if p = 1
2 and is finite if p 6= 1

2 . This shows that state 0 is
recurrent if p = 1

2 , or transient if p 6= 1
2 .
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Remark.

• In the two-dimensional symmetric random walk over R2, all states
are recurrent as well;

• However, in 3D or higher dimensions, all states of the symmetric
random walk will be transient.

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 22/38



Math 263, Classification of States

Def 0.6. For a fixed state i , let

d = gcd
{

n ≥ 1 | p(n)
i i > 0

}
.

We say that state i is

• periodic with period d , if d > 1 (that is, return to state i is possible
only in multiples of d time steps).

• aperiodic, if d = 1.

If all states of a Markov chain are periodic with the same period d (or
aperiodic), then the chain is said to be periodic with period d (or aperiodic).
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Theorem 0.4. If two states of a Markov chain communicate, then they
have the same period. Thus, periodicity is a class property.

Proof. Suppose state i has a period of d , and state j has a period of d ′.
We would like to show that d = d ′.

Since i ←→ j , there exist m,n ≥ 0 such that

p(m)
i j > 0, p(n)

j i > 0.

and thus,
p(m+n)

i i ≥ p(m)
i j p(n)

j i > 0

From this, we conclude that d | m +n.
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Now suppose that p(k)
j j > 0 for some k. Since

p(m+n+k)
i i ≥ p(m)

i j p(k)
j j p(n)

j i > 0

we have d | m +n +k. We already know that d | m +n. It follows that
d | k. This implies that d ≤ d ′.

By similar reasoning, we can show that d ′ | d .

Therefore, we must have d = d ′.
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Example 0.6. Every state of the 1D random walk is periodic with period
2, since return to any starting point is only possible after an even number
of steps.

-1 1
p

1− p
0-2 2

b b bbbb
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Example 0.7. What is an example of a state that has a period of 3? (If
there is a self-loop, then the period must be 1)
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Let i be a recurrent state in a Markov chain. Define

Ni = min{n ≥ 1 : Xn = i } ←− hitting time (first passage time)

which counts the number of time steps needed for the chain to first enter
state i (regardless of the initial state), and

mi i =E [Ni | X0 = i ] ←− mean recurrence time

which denotes the expected number of transitions that the chain takes to
return to state i , given that it starts in state i .
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Def 0.7. A recurrent state i is called positive recurrent if mi i <∞; it is
called null recurrent if mi i =∞.

Remark. It can be shown that (we will prove this in next lecture)

• Positive recurrence is a class property, that is, if i ←→ j and i is
positive recurrent, then j must be positive recurrent as well. Similarly,
null recurrence is also a class property.

• In a finite Markov chain, all recurrent states are positive recurrent.
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We derive a formula for the mean recurrence time mi i at state i .

Let
f (n)

i i = P (Ni = n | X0 = i )

which represents the probability that we start from state i and return to it
for the first time after n steps.
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Then we have the following result.
Theorem 0.5.

mi i =
∞∑

n=1
n · f (n)

i i .

Proof.

mi i =E(Ni | X0 = i ) =
∞∑

n=1
nP (Ni = n | X0 = i ) =

∞∑
n=1

n f (n)
i i .
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Example 0.8. Consider a Markov chain whose states are the positive
integers and whose transition probabilities are

pi 1 = 1

i +1
, pi ,i+1 = i

i +1
, for i = 1,2, . . .

21

1
2

1
2

1
3

2
3

1
4

3
4

1
5

3 4
b b b

4
5

That is with increasingly large probability the chain will continue “stepping”
to the right or alternatively “reset” to 1. Is state 1 recurrent? Is state 1
null recurrent?
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Solution. State 1 is recurrent but not positive recurrent (thus null recur-
rent). First, to see that it is a recurrent state, compute

f11 = 1−P (The chain never returns to i | X0 = i )

= 1− 1

2
· 2

3
· · · n

n +1
· · · = 1.

Next, we compute its mean recurrence time to show it is null recurrent:

m11 =
∞∑

n=1
n f (n)

11 =
∞∑

n=1
n · 1

2

2

3
· · · n −1

n

1

n +1
=

∞∑
n=1

1

n +1
=∞.
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Recall that state i is transient if the probability that starting in state i ,
the process will ever reenter i satisfies

fi i < 1.

Below is alternative way to check transiency.
Theorem 0.6. State i is transient if

∞∑
n=1

f (n)
i i < 1.
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Proof.

fi i = P

( ∞⋃
n=1

{Xn = i }

∣∣∣∣ X0 = i

)
= P (Ni <∞ | X0 = i )

= P

( ∞⋃
n=1

{Ni = n}

∣∣∣∣ X0 = i

)
=

∞∑
n=1

P (Ni = n | X0 = i )

=
∞∑

n=1
f (n)

i i .
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Def 0.8. A state which is positive recurrent and aperiodic is called ergodic.
In other words, a state is ergodic if it

• is recurrent,

• has finite mean recurrence time, and

• has a period of 1.

If all states in an irreducible Markov chain are ergodic, then the chain is
said to be ergodic.
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Summary

Terminology

• n-step transition probability: p(n)
i i

• Probability of ever re-entering state i (when starting from it): fi i

• Hitting time (first passage time): Ni

• n-step hitting probability: f (n)
i i

• Mean recurrence time: mi i
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Classification of states:

• Recurrent / transient

• Positive recurrent / null recurrent

• Periodic / aperiodic

• Ergodic
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