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This lecture is based on the following textbook sections:

= Section 4.4

and also the following lecture: https://www.stat.uchicago.edu/~yibi/
teaching/stat317/2013/Lectures/Lectureb_4up.pdf

Outline of the presentation
= Stationary distributions
= Limiting probabilities

» Long-run proportions



Math 263, Stationary distributions and limiting probabilities

Assume a Markov chain {X,,: n=0,1,2,...} with state space S and transition
matrix P.

Let st = (;)jes be a row vector denoting a probability distribution on S,
ie.,
m; =0, Z m;=1.
ieS
Def 0.1. s is called a stationary (or equilibrium) distribution of the
Markov chain if it satisfies

7 = 7P, (7 is a left eigenvector corresponding to 1)

or in entrywise form,

”j:Z”ipij» foralljeS.

ieS
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Remark. T is a (right) eigenvector of P! corresponding to the same
eigenvalue 1:

Tl = o7
Note that 1 is a (right) eigenvector of P corresponding to eigenvalue 1:

P1=1.

In general, a square matrix A and its transpose have the same eigenvalues
det(AI-A") = det(A1-A)
but they do not have the same eigenvectors.
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Theorem 0.1. Let {X,,:n=0,1,2,...} be a Markov chain with a stationary
distribution x. If X, ~ & for some integer n =0, then X, ~ 7.

Remark. This implies that for the same n, the future states X;12, Xj43, ...
all have the same distribution .

Proof. For any j€S,
PXn+1=J) =) PXns1=j| Xn=)P(Xp=1)
€S
= Z pijni = 7'[j. OJ

ieS
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Example 0.1. Find the stationary distribution of the Markov chain below:

0o 9 .1 0

8 .1 0 1
P=

0o 5 3 2

d 0 0 9

Answer: 7 =(.2788,.3009,.0398,.3805) by software. Alternatively, we can
solve P = 7 (along with the requirement Y 7; = 1) directly by hand:

1= 0.87y+0.17m4 1= 63/226
= 0.97m;+0.1m2 +0.573 o= 68/226
3= 0.1m;+0.373 - 3= 9/226

= 0.1my+0.2m3+0.9714 Ty = 86/226
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Existence (and uniqueness) of stationary distributions

Theorem 0.2. For any irreducible Markov chain with state space S and
transition matrix P, it has a stationary distribution & = (7;):

VjeS: mj=0, Y mi=1, m=nP.
ieS
if and only if the chain is positive recurrent.

Furthermore, if a solution exists, then it will be unique and for state j,

liml’l"OO p('n) )

- i
=
j . . . L
limy—oo 13 1 pglj), if the chain is periodic

if the chain is aperiodic
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Remark. In the aperiodic case, 7; is also the limiting probability that the
chain is in state j, i.e.,

= r}i_r}goP(Xn =7j).

To prove this, let @ = (a;);es be the initial distribution of the chain.

Then
PXy=j)=) PXn=jlXo=0)PXo=1)
ieS
-ypa ST Y ai=ng.
ieS ieS
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Example 0.2 (Social mobility). Let X,, be a family’s social class: 1 (lower),
2 (middle), 3 (upper) in the nth generation. This was modeled as a Markov
chain with transition matrix

o

Il
w i o
w o =
N I

It is irreducible, positive recurrent and aperiodic (i.e., ergodic). Thus,
there is a unique stationary distribution:

6 3 2
xT=|—,—,—|=1(0.5454,0.2727,0.1818),
11 11 11

and the chain will converge to the stationary distribution.
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8 1 .1 0.5471 0.2715 0.1814
P=|2 6 2| — P°=]05430 02745 0.1825

3 3 4 0.5441 0.2737 0.1822
0.5455 0.2727 0.1818

— P =]0.5454 0.2727 0.1818
0.5454 0.2727 0.1818
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Example 0.3. Consider the following Markov chain:

0 1
P=
1 0
It is irreducible and positive recurrent, and thus has a unique stationary

distribution:
11
T=|=,=].
2 2

The chain does not converge to the stationary distribution because it is
periodic with period 2: For any integer ¢ =0,

0 1) 1 0f
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However, the following identity is still true:

N
nj:hm—Zpij

n—oon k=1
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Example 0.4 (Gambler's Ruin). The underlying Markov chain has three
communicating classes {0},{1,..., N—1},{N}, and thus it is not irreducible.

1
O=—0—0O—0 7’@
P I—-p l—p

1—p 1-—
However, the chain has two stationary distributions (corresponding to the
two recurrent classes):

=z =01,09,...,00), mx2=(0,0,...,0,1)
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When N =4 and =1 (symmetric random walk),

(1 0 0 0 O] [1 0 0 0 O]
1 1 3 1
00 5 0 3 1 000
[0 0 0 0 1) [0 0 0 0 1]

What does this imply?
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Example 0.5. The 1-dimensional symmetric random walk over Z must
be null recurrent.

coe N N NP TN N cee
Q (\-2/) (\-1/ (0) (1) (2) Q

(This is a homework question, #39. Use proof by contradiction)
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Consider the Markov chain defined on a finite, undirected, weighted graph
¢ ={V,E,W}, with state space S=V and transition matrix

P=D"'w, D=diagd), d=W-1
The chain is finite, and if the graph is connected, then the Markov chain

must be irreducible and also positive recurrent. Accordingly, it possesses a
unique stationary distribution.

0.8 0.8
/\ 0.9

0.8 0.1
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Proposition 0.3. For any finite, connected graph, the induced Markov
chain possesses the following unique stationary distribution

1
-d, h Vol(V) = d;.
Vo) where Vol(V) lEZV ;

If the graph is also non-bipartite, then the chain always converges to the
above stationary distribution.

Proof. First, we show that
dP=dD"'w=1"w=d — aP=ux.

Thus, 7 is a stationary distribution of the chain and it is also unique.
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For the convergence part, we consider the following two cases:
(1) Bipartite graphs (no convergence, because d = 2)

(2) Non-bipartite graphs (convergence)

0.8 0.8
/\ 0.9
L . ]

0.8 0.1
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Long-run proportion of visits to a state

Theorem 0.4. For an irreducible, positive recurrent Markov chain with
stationary distribution - = (), 7; is also the long-run proportion of time
that the chain is in state j (regardless of initial state 7).

X1 X2 XZ
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Proof. To see this, let

In=1x,=j, foralln=1

and define ,
T=> I,
n=1
which represents the total number of visits to state j in ¢ steps.

The proportion of visits to state j in ¢ steps is

1 ¢l
=g L

~| N
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and we would like to show that it converges to 7; on average:

T 1 Z
E[— oni]:—ZE[In|XO:i]
4 anl
1 4
:ZZ1-P(I,,=1IXO:j)+0~P(In:0|X0:j)
n=1
1 l
==Y PXp=jlXo=])
gnzl
1< /-
_ (n) —% .
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Example 0.6. Three out of every four trucks on the road are followed by
a car, while only one out of every five cars is followed by a truck. What
fraction of vehicles on the road are trucks?

c ¢cr cccrTrTTCUCCCTT CCOC

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 22/33




Math 263, Stationary distributions and limiting probabilities

Solution. Let X,, be the type of the nth vehicle, T (for truck) or C (for
car), when counting from one end of the road to the other end. Then
{X;,, n =1} is a Markov chain with state space S ={T, C} and corresponding

|

Since the chain is irreducible and positive recurrent, it has a unique

transition matrix

P=

QU= =
[SIFNUNIY

stationary distribution 7 = (m1,7¢) given by

1 N 1 + ] 4 15
xTp=np-—+7Tc-—, AT+TC= — A= —, = —
TRy tC S T+7C =19 7CT 19

The fraction of trucks on the road is the long-run proportion 7 = %.
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Theorem 0.5. For any irreducible, positive recurrent Markov chain, with
stationary distribution & = (), we must have

1
nj=—— forall je§,
mjj

where mj; represents the mean recurrence time of state j:
m;jj ZE(leX():j).
Remark. This theorem implies that 7; >0 for all positive recurrent states

j in an irreducible chain (as m;; <oco for all j). Note that 7; can also be
interpreted as the long-run proportion of the chain being in state j here.
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Proof. To see this, consider

4
T= Z Iy, In= 1X,,:j

which represents the total number of visits to state j in ¢ time steps.

Denote by N},...,N].T the individual recurrence times in the ¢ time steps:

le N]2 NJT
AR Y YR YA
X1 Xo
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Then

Nj+-+N/ <l<Nj+--+N/ +N/*,

where N].T’rl represents the additional number of time steps that will be
needed by the chain to enter state j again (after the first T visits).

Taking conditional expectation E[- | Xo = j] of left-hand side gives that
E(N}+---+N].T|X0=j):E[E(N}+---+N].T|XO:j,T)|XO=j]
e
=E[T-mjj|Xo =]
=m;j;-E[T|Xo = j]
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Similarly,

Xo = j) = mjj-E[T+11X = j]

=m]'j+m]'j~E[T|X0=j]

Combining them together, we have
mjj~E[T|X0:j] 5€<mjj+mjj~E[T|X0=j]

or
1 . 1 1 .
mjj'ZE[T|XO:]1s1<mjj Z+zE[T|XO=]]
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We next derive an expression for E[T | Xp = jI:

E[T|Xo=j] E(ln | Xo =)

4
Z
é
Z P, =1|Xy=j)+0-P(I,=0|Xg=j)
4
ZP(Xn—Jlxo—J)

4

Z (n)

n
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It follows that
1¢ 1 1¢
(n) (n)
I P Sl<’"ff'(z+z ij,.)
n=1 n=1
Letting ¢ — oo yields that
mjj-nj<l=m;jj-(0+7m;)
So we must have

1
mi;-mi=1, and thus n;j=—.
Jit 7t j -
mjj
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Remark. If the chain is irreducible but null recurrent, then m;; = oco for
all states j. Such a Markov chain may have no stationary distribution &

(e.g., the 1D symmetric random walk over Z).

However, we can still talk about the long-run proportion of the chain being

in state j:

Starting with the inequality

N}+---+N].Ts£ for all ¢
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we take conditional expectation E[- | Xp = j] and repeat the same steps to
obtain that

m;ji-E[T|Xo=jl<¢ forall ¢
or equivalently,
m;ji-E[T/l| Xo=jl<1 forall ¢
Because state j is null recurrent (m;; = c0), we must have
E[T/¢|Xo=jl=0 forall¢

This shows that the long run proportion of visits to state j is zero. Thus,
if 7; represents the long-run proportion of state j (instead of a stationary
probability), then the formula 7; = - is still valid.
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Theorem 0.6. Positive recurrence is a class property. That is, if state

j is positive recurrent, and state j communicates with state k, then state

k is also positive recurrent.

Proof. (We cannot use the stationary distribution as we do not know

whether it exists; we'll consider long-run proportions instead)

First, there exists a positive integer n such that
(n)
Pip > 0

Since state j is positive recurrent, the long-run proportion is

Jl'j=1/m]']'>0
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For any positive integer t and state i, we have
(t+n) 0, ,mn
Pik = pl] pjk
and also

5 e () o

Letting ¢ — oo, we obtain that
nkznj-p;']?>0

where 7y represents the long-run proportion of visits to state k. It follows

that .
Mg = — <00
Tk
and thus state k is also positive recurrent. O
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