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This lecture is based on the following textbook sections:

• Section 4.4

and also the following lecture: https://www.stat.uchicago.edu/~yibi/

teaching/stat317/2013/Lectures/Lecture5_4up.pdf

Outline of the presentation

• Stationary distributions

• Limiting probabilities

• Long-run proportions



Math 263, Stationary distributions and limiting probabilities

Assume a Markov chain {Xn : n = 0,1,2, . . .} with state space S and transition
matrix P.

Let π= (πi )i∈S be a row vector denoting a probability distribution on S,
i.e.,

πi ≥ 0,
∑
i∈S

πi = 1.

Def 0.1. π is called a stationary (or equilibrium) distribution of the
Markov chain if it satisfies

π=πP, (π is a left eigenvector corresponding to 1)

or in entrywise form,

π j =
∑
i∈S

πi pi j , for all j ∈ S.
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Remark. πT is a (right) eigenvector of PT corresponding to the same
eigenvalue 1:

PTπT =πT .

Note that 1 is a (right) eigenvector of P corresponding to eigenvalue 1:

P1 = 1 .

In general, a square matrix A and its transpose have the same eigenvalues

det(λI−AT ) = det(λI−A)

but they do not have the same eigenvectors.
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Theorem 0.1. Let {Xn : n = 0,1,2, . . .} be a Markov chain with a stationary
distribution π. If Xn ∼π for some integer n ≥ 0, then Xn+1 ∼π.

Remark. This implies that for the same n, the future states Xn+2, Xn+3, . . .

all have the same distribution π.

Proof. For any j ∈ S,

P (Xn+1 = j ) = ∑
i∈S

P (Xn+1 = j | Xn = i )P (Xn = i )

= ∑
i∈S

pi jπi =π j .
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Example 0.1. Find the stationary distribution of the Markov chain below:

P =


0 .9 .1 0

.8 .1 0 .1

0 .5 .3 .2

.1 0 0 .9


Answer: π= (.2788, .3009, .0398, .3805) by software. Alternatively, we can
solve πP =π (along with the requirement ∑

πi = 1) directly by hand:

π1 = 0.8π2 +0.1π4

π2 = 0.9π1 +0.1π2 +0.5π3

π3 = 0.1π1 +0.3π3

π4 = 0.1π2 +0.2π3 +0.9π4

−→



π1 = 63/226

π2 = 68/226

π3 = 9/226

π4 = 86/226
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Existence (and uniqueness) of stationary distributions

Theorem 0.2. For any irreducible Markov chain with state space S and
transition matrix P, it has a stationary distribution π= (π j ):

∀ j ∈ S : π j ≥ 0,
∑
i∈S

πi = 1, π=πP.

if and only if the chain is positive recurrent.

Furthermore, if a solution exists, then it will be unique and for state j ,

π j =
limn→∞ p(n)

i j , if the chain is aperiodic

limn→∞ 1
n

∑n
k=1 p(k)

i j , if the chain is periodic
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Remark. In the aperiodic case, π j is also the limiting probability that the
chain is in state j , i.e.,

π j = lim
n→∞P (Xn = j ).

To prove this, let α= (αi )i∈S be the initial distribution of the chain.

Then

P (Xn = j ) = ∑
i∈S

P (Xn = j | X0 = i )P (X0 = i )

= ∑
i∈S

p(n)
i j αi

n→∞−→ π j
∑
i∈S

αi =π j .
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Example 0.2 (Social mobility). Let Xn be a family’s social class: 1 (lower),
2 (middle), 3 (upper) in the nth generation. This was modeled as a Markov
chain with transition matrix

P =

.8 .1 .1

.2 .6 .2

.3 .3 .4


It is irreducible, positive recurrent and aperiodic (i.e., ergodic). Thus,
there is a unique stationary distribution:

π=
(

6

11
,

3

11
,

2

11

)
= (0.5454,0.2727,0.1818),

and the chain will converge to the stationary distribution.
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P =

.8 .1 .1

.2 .6 .2

.3 .3 .4

 −→ P10 =

0.5471 0.2715 0.1814

0.5430 0.2745 0.1825

0.5441 0.2737 0.1822



−→ P20 =

0.5455 0.2727 0.1818

0.5454 0.2727 0.1818

0.5454 0.2727 0.1818


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Example 0.3. Consider the following Markov chain:

P =
(

0 1

1 0

)

It is irreducible and positive recurrent, and thus has a unique stationary
distribution:

π=
(

1

2
,

1

2

)
.

The chain does not converge to the stationary distribution because it is
periodic with period 2: For any integer `≥ 0,

P2` = I =
(

1 0

0 1

)
, P2`+1 = P =

(
0 1

1 0

)
.
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However, the following identity is still true:

π j = lim
n→∞

1

n

n∑
k=1

p(k)
i j
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Example 0.4 (Gambler’s Ruin). The underlying Markov chain has three
communicating classes {0}, {1, . . . , N −1}, {N }, and thus it is not irreducible.

2 N0 1
p ppp

1− p 1− p1− p1− p

1 1

However, the chain has two stationary distributions (corresponding to the
two recurrent classes):

π1 = (1,0, . . . ,0,0), π2 = (0,0, . . . ,0,1)
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When N = 4 and = 1
2 (symmetric random walk),

P =


1 0 0 0 0
1
2 0 1

2 0 0

0 1
2 0 1

2 0

0 0 1
2 0 1

2

0 0 0 0 1

 −→ P30 =


1 0 0 0 0
3
4 0 0 0 1

4
1
2 0 0 0 1

2
1
4 0 0 0 3

4

0 0 0 0 1


What does this imply?
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Example 0.5. The 1-dimensional symmetric random walk over Z must
be null recurrent.

-1 1
p

1− p
0-2 2

b b bbbb

(This is a homework question, #39. Use proof by contradiction)
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Consider the Markov chain defined on a finite, undirected, weighted graph
G = {V ,E ,W}, with state space S =V and transition matrix

P = D−1W, D = diag(d), d = W ·1

The chain is finite, and if the graph is connected, then the Markov chain
must be irreducible and also positive recurrent. Accordingly, it possesses a
unique stationary distribution.

b

b b b b

0.8 0.8

0.8 0.1

0.9
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Proposition 0.3. For any finite, connected graph, the induced Markov
chain possesses the following unique stationary distribution

π= 1

Vol(V )
·d, where Vol(V ) = ∑

i∈V
di .

If the graph is also non-bipartite, then the chain always converges to the
above stationary distribution.

Proof. First, we show that

dP = dD−1W = 1T W = d −→ πP =π.

Thus, π is a stationary distribution of the chain and it is also unique.
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For the convergence part, we consider the following two cases:

(1) Bipartite graphs (no convergence, because d = 2)

(2) Non-bipartite graphs (convergence)

b

b b b b

0.8 0.8

0.8 0.1

0.9
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Long-run proportion of visits to a state

Theorem 0.4. For an irreducible, positive recurrent Markov chain with
stationary distribution π= (π j ), π j is also the long-run proportion of time
that the chain is in state j (regardless of initial state i).
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Proof. To see this, let

In = 1Xn= j , for all n ≥ 1

and define
T = ∑̀

n=1
In

which represents the total number of visits to state j in ` steps.

The proportion of visits to state j in ` steps is

T

`
= 1

`

∑̀
n=1

In ,
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and we would like to show that it converges to π j on average:

E
[

T

`

∣∣∣∣ X0 = i

]
= 1

`

∑̀
n=1

E[In | X0 = i ]

= 1

`

∑̀
n=1

1 ·P (In = 1 | X0 = j )+0 ·P (In = 0 | X0 = j )

= 1

`

∑̀
n=1

P (Xn = j | X0 = j )

= 1

`

∑̀
n=1

p(n)
i j

`→∞−→ π j .
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Example 0.6. Three out of every four trucks on the road are followed by
a car, while only one out of every five cars is followed by a truck. What
fraction of vehicles on the road are trucks?

C C T C C C T T C C C C T C C C
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Solution. Let Xn be the type of the nth vehicle, T (for truck) or C (for
car), when counting from one end of the road to the other end. Then
{Xn ,n ≥ 1} is a Markov chain with state space S = {T,C } and corresponding
transition matrix

P =
[

1
4

3
4

1
5

4
5

]
Since the chain is irreducible and positive recurrent, it has a unique
stationary distribution π= (πT ,πC ) given by

πT =πT · 1

4
+πC · 1

5
, πT +πC = 1 −→ πT = 4

19
, πC = 15

19

The fraction of trucks on the road is the long-run proportion πT = 4
19 .
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Theorem 0.5. For any irreducible, positive recurrent Markov chain, with
stationary distribution π= (π j ), we must have

π j = 1

m j j
for all j ∈ S,

where m j j represents the mean recurrence time of state j :

m j j =E(N j | X0 = j ).

Remark. This theorem implies that π j > 0 for all positive recurrent states
j in an irreducible chain (as m j j <∞ for all j ). Note that π j can also be
interpreted as the long-run proportion of the chain being in state j here.
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Proof. To see this, consider

T = ∑̀
n=1

In , In = 1Xn= j

which represents the total number of visits to state j in ` time steps.

Denote by N 1
j , . . . , N T

j the individual recurrence times in the ` time steps:

j jj j

X1 X2 Xℓ

N1
j N2

j NT
j
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Then
N 1

j +·· ·+N T
j ≤ `< N 1

j +·· ·+N T
j +N T+1

j ,

where N T+1
j represents the additional number of time steps that will be

needed by the chain to enter state j again (after the first T visits).

Taking conditional expectation E[· | X0 = j ] of left-hand side gives that

E
(

N 1
j +·· ·+N T

j

∣∣∣ X0 = j
)
=E

[
E

(
N 1

j +·· ·+N T
j

∣∣∣ X0 = j ,T
)∣∣∣ X0 = j

]
=E

[
T ·E

(
N 1

j

∣∣∣ X0 = j
)∣∣∣ X0 = j

]
=E

[
T ·m j j

∣∣ X0 = j
]

= m j j ·E
[
T |X0 = j

]
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Similarly,

E
(

N 1
j +·· ·+N T

j +N T+1
j

∣∣∣ X0 = j
)
= m j j ·E

[
T +1|X0 = j

]
= m j j +m j j ·E

[
T |X0 = j

]
Combining them together, we have

m j j ·E[T | X0 = j ] ≤ `< m j j +m j j ·E[T | X0 = j ]

or
m j j · 1

`
E[T | X0 = j ] ≤ 1 < m j j

(
1

`
+ 1

`
E[T | X0 = j ]

)
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We next derive an expression for E[T | X0 = j ]:

E[T | X0 = j ] = ∑̀
n=1

E(In | X0 = j )

= ∑̀
n=1

1 ·P (In = 1 | X0 = j )+0 ·P (In = 0 | X0 = j )

= ∑̀
n=1

P (Xn = j | X0 = j )

= ∑̀
n=1

p(n)
j j
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It follows that

m j j · 1

`

∑̀
n=1

p(n)
j j ≤ 1 < m j j ·

(
1

`
+ 1

`

∑̀
n=1

p(n)
j j

)

Letting `→∞ yields that

m j j ·π j ≤ 1 ≤ m j j · (0+π j )

So we must have

m j j ·π j = 1, and thus π j = 1

m j j
.
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Remark. If the chain is irreducible but null recurrent, then m j j =∞ for
all states j . Such a Markov chain may have no stationary distribution π
(e.g., the 1D symmetric random walk over Z).

However, we can still talk about the long-run proportion of the chain being
in state j :

T

`
= 1

`

∑̀
n=1

In , as `→∞.

Starting with the inequality

N 1
j +·· ·+N T

j ≤ ` for all `
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we take conditional expectation E[· | X0 = j ] and repeat the same steps to
obtain that

m j j ·E[T | X0 = j ] ≤ ` for all `

or equivalently,

m j j ·E[T /` | X0 = j ] ≤ 1 for all `

Because state j is null recurrent (m j j =∞), we must have

E[T /` | X0 = j ] = 0 for all `

This shows that the long run proportion of visits to state j is zero. Thus,
if π j represents the long-run proportion of state j (instead of a stationary
probability), then the formula π j = 1

m j j
is still valid.

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 31/33



Math 263, Stationary distributions and limiting probabilities

Theorem 0.6. Positive recurrence is a class property. That is, if state
j is positive recurrent, and state j communicates with state k, then state
k is also positive recurrent.

Proof. (We cannot use the stationary distribution as we do not know
whether it exists; we’ll consider long-run proportions instead)

First, there exists a positive integer n such that

p(n)
j k > 0

Since state j is positive recurrent, the long-run proportion is

π j = 1/m j j > 0
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For any positive integer t and state i , we have

p(t+n)
i k ≥ p(t )

i j ·p(n)
j k

and also
1

`

∑̀
t=1

p(t+n)
i k ≥

(
1

`

∑̀
t=1

p(t )
i j

)
·p(n)

j k

Letting `→∞, we obtain that

πk ≥π j ·p(n)
j k > 0

where πk represents the long-run proportion of visits to state k. It follows
that

mkk = 1

πk
<∞

and thus state k is also positive recurrent.
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