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This lecture is based on the following textbook sections:

• Section 4.7

Outline of the presentation

• What is a branching process?

• Expectation and variance of Xn

• Probability of the population dying out



Math 263, Branching processes

Consider a population consisting of individuals able to produce offspring
of the same kind.

Suppose that each individual will, by the end of its lifetime, have produced
j new offspring with probability p j independently of the numbers produced
by other individuals:

0 1 2 . . . j . . .

p0 p1 p2 . . . p j . . .

In the above, 0 ≤ p j < 1 for all j and ∑
j≥0 p j = 1
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Math 263, Branching processes

The number of individuals initially present, denoted by X0, is called the
size of the zeroth generation.

All offspring of the zeroth generation constitute the first generation and
their number is denoted by X1.

In general, let Xn denote the size of the nth generation.

It follows that {Xn ,n = 0,1, . . .} is a Markov chain with state space S = Z+
0 ,

the set of nonnegative integers.
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Let’s sketch the chain below:
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This Markov chain is not irreducible:

• State 0 is recurrent, since it is absorbing.

• If p0 > 0, then pi 0 = p i
0 > 0 for all i > 0, implying that all other states

are transient.

Since any finite set of transient states {1,2, . . . ,n} will be visited only
finitely often, this leads to the important conclusion that, if p0 > 0, then
the population will either die out or its size will converge to infinity.
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Let Yn,i be the number of offspring of a single individual i in the nth
generation: P (Yn,i = j ) = p j for all j ≥ 0.

Then for any fixed n ≥ 1,

Xn+1 =
Xn∑

i=1
Yn,i

and {Yn,i }i are iid with the same expected value and variance

µ=
∞∑

j=0
j p j , σ2 =

∞∑
j=0

( j −µ)2p j
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Math 263, Branching processes

Theorem 0.1. Suppose that X0 = 1. Then, for any n ≥ 1,

E(Xn) =µn , Var(Xn) =
nσ2, µ= 1

µn−1(1−µn )
1−µ σ2, µ≥ 1

Proof. We condition on Xn−1 to obtain

E(Xn) =E(E(Xn | Xn−1)) =E(µXn−1) =µE(Xn−1), n ≥ 1.

Combining with E(X0) = 1 we obtain that E(Xn) =µn for all n ≥ 1.
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Similarly, we condition on Xn−1 to calculate the variance of Xn :

Var(Xn) =E(Var(Xn | Xn−1))+Var(E(Xn | Xn−1))

=E(σ2Xn−1)+Var(µXn−1)

=σ2µn−1 +µ2Var(Xn−1)

By applying the formula recursively with n = 1,2, . . ., we obtain that

Var(Xn) =σ2(µn−1 +µn +·· ·+µ2n−2) =
nσ2, µ= 1

µn−1(1−µn )
1−µ σ2, µ≥ 1
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Lastly, we study the probability that the population will eventually die out
(under the assumption that X0 = 1):

π0 = lim
n→∞P (Xn = 0 | X0 = 1) = lim

n→∞p(n)
10 .

Theorem 0.2. If µ≤ 1, then π0 = 1; otherwise (i.e., µ> 1), π0 < 1 is the
smallest positive root of

x =
∞∑

j=0
p j x j
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Proof We condition on the number of offspring of the initial individual:

π0 = P (population dies out | X0 = 1)

= ∑
j≥0

P (population dies out | X1 = j , X0 = 1///////)P (X1 = j | X0 = 1)

= ∑
j≥0

π
j
0 ·p j

This shows that π0 is a root of the following equation:

x =
∞∑

j=0
p j x j
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Let
g (x) = x −

∞∑
j=0

p j x j , 0 ≤ x ≤ 1.

Then
g (0) =−p0 < 0, g (1) = 0

Additionally,

g ′(x) = 1−
∞∑

j=1
j p j x j−1, g ′′(x) =−

∞∑
j=2

j ( j −1)p j x j−2 < 0

and in particular,

g ′(0) = 1−p1 > 0, g ′(1) = 1−µ.
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If µ≤ 1, then

g ′(1) ≥ 0, g ′(x) > g ′(1) ≥ 0 for all 0 < x < 1.

Thus, x = 1 must be the only zero of g (x) on [0,1], implying that π0 = 1.
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On the other hand, if µ> 1, then g ′(1) = 1−µ< 0.

It follows that there exists some 0 < c < 1 such that g ′(c) = 0 and thus g (c)

is the absolute maximum of g (x) on [0,1]. In particular, g (c) > g (1) = 0.

Since g (0) < 0, by continuity, there exist a number 0 < r < c < 1 such that
g (r ) = 0. This indicates that g (x) = 0 has a root r ∈ (0,1)

We conclude that π0 = r < 1 because E(Xn) =µn →∞ (which requires that
π0 < 1).
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Remark. It can also be shown that π0 must be the smallest positive number
satisfying

x =
∞∑

j=0
p j x j

See Chapter 4 Problem 65 (page 287).
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Example 0.1. Determine π0 in each case below:

• p0 = 1
3 , p1 = 1

2 , p2 = 0, p3 = 1
6 (answer: π0 = 1)

• p0 = 1
4 , p1 = 1

4 , p2 = 1
2 (answer: π0 = 1

2)
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Example 0.2. For each branching process in the preceding example, what
is the probability that the population will die out if it initially consists of
n individuals?
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