MATH 285 HW2

Xiaoyan Chong

November 23, 2015

1 Problem 1

(a) Figure 1 shows the map of Chinese Cities using build-in function emdscale.m.

Chinese City (cmdscale)
T T T

T PG T T T
1500 4
1000 -
Yinchuan
500 | o Harbi
gHohhot ¢Beiling Chaf ggﬁuw
OShengang
OTianjin
;Lhasa 1
-500 4
oShanghai
-1000 |- -
¢Chongging
-1500 |- 4
-2000 |- : .
L L . 1 L oNanning L . 1
-2500 -2000 -1500 -1000 -500 0 500 1000 1500

Figure 1: Chinese Cities (cmdscale)

Figure 2 shows the map of Chinese Cities using build-in function zecmds.m. By this funciton,
I also get Stress = 0.0805. Since the stress is less than 0.1, we conclude the result is pretty

good.
e Chinese City (xcmds)
T O~ T T T T T T T
1500 4
1000 -
Yinchuan
+ o Harbi
500 oHohhot Beijing Cha%cahru‘nn
< it
oShenyang
Tianjin
ol oan J
Lhasa
-500 4
OShangha]
-1000 |- -
oChongaing
-1500 |- 4
-2000 |- : .
L L L L 1oNanning L L L
-2500 -2000 -1500 -1000 -500 o] 500 1000 1500

Figure 2: Chinese Cities (xcmds)

The following is the Matlab code:

J Problem_1.m [xcmds.m L+ l

6 %% load data

7 - load ChineseCityData.mat

8

9 %% plot with cmdscale

10 - [Y, e] = cmdscale(dists)

11

12 - fl1_1 = figure;

1B= labels = Cities;

14 - plot(-Y(:,1),-Y(:,2),"'rd");

15 - axis equal;

16 - text(—(Y(:,1))+30,-(Y(:,2))+30,labels, 'Color','b", 'HorizontalAlignment', 'left');
17 - title('Chinese City (cmdscale)');

18 - grid on;

19

20 - saveas(f1l_1,"'/Users/XC/Dropbox/SJSU/Courses/Math 285 Data Modeling/HW/hw2/1_cmdscale.jpg','jpg"')
21

22 %% plot with my own function

23

24 - [Y, stress] = xcmds(dists,2)

23|= fl1_2 = figure;

26 - labels = Cities;

27 - plot(Y(:,1),Y(:,2),'bo")

28 - axis equal;

29 - text(Y(:,1)+40,Y(:,2)+30,labels, 'Color','m', 'HorizontalAlignment', 'left');

30 - title('Chinese City (xcmds)');

3= grid on;

32

B3| = saveas(fl_2,'/Users/XC/Dropbox/SJSU/Courses/Math 285 Data Modeling/HW/hw2/1_xcmds.jpg',"'jpg"')
34

Figure 3: Problem 1 Code

¢ | Problem_1.m | xcmds.m | + |

1 [function [Y,stress] = xcmds(X,k)

2 % this is a function for mds

3 - % we can compare this with cmdscale in Matlab
4 - [D,N] = size(X);

5|= Xsquare = X.* X ;

6 - unitl = ones(D,1);

75 v = ones(D,1);

8 - I = diag(v);

9= J = I- 1/D % unitl * unitl';

10 - B = (-1/2)%J * Xsquare * J;

11

12 % extract engivalues and eigenvectors of B

13 - [V,D] = eig(B);

14 - D2 = diag(sort(diag(D), 'descend'));

15 - e=diag(D2);

16 - [c,ind] = sort(diag(D), 'descend');

17, - V2 = V(:,ind)

18 - eigvaluek = D2(1:k,1:k);eigvectork = V2(:, 1:k);
19| = eigvaluek

20

21 % Build Y

22 - Y = eigvectork * sqrt(eigvaluek);

23

24 % stress

25 - d = L2_distance(Y',Y")

26 - stress = sqrt(sum(sum((X-d).”2))/sum(sum(X.”2)))
27 - “end

Figure 4: xcmds.m

(b) No, we could not use these distances to construct a world map. In this case, when we project
the distance from spherical onto 2 dimensional space, we could not preserve the distance
between two cities. If on spherical, the distance between two cities are pretty close, when
projecting to 2-D plane, we cannot preserve the closeness, they may be far awary from each
other.

2 Problem 2

(1)
(2)

(3)

(4)

03

Rasidual variance
e e
& N

e

0.05

Data set:Glassdata

These data belong to a Glass Identification Database and were downloaded from the UCI
Machine Learning Repository [Newman, et al., 1998].

This data has 214 observations, with 9 variables: refractive index, sodium, magnesium, alu-
minum, silicon, potassium, calcium, barium, and iron.

The data set also includes a class label: building windows float processed(type 1), building
windows not float processed(type 2), vehicle windows float processed(type 3), building win-
dows not float processed (none in this dataset)(type 4), containers(type 5), tableware(type 6),
and headlamps(type 7).

One could use this data set to develop a classifier that could be used in forensic science
applications.

By the description on (4), we may see type 1,2,3 are very similar, and type 6, 7 are very
similar. According to Figure 7 (Isomap result in 2-D), we could see that 1,2 , 3 are grouped
together, and 6, 7 are in a different side of (type 1,2, and 3). Since different types are classified
based on the concentrations of variables in introduced in (3), we could say there is a pattern,
because similar types of glass contains similar concentrations of Na, Mg, Al, Si, K, Ca, Ba,
and Fe. And in our case, these similar types are very close to each other in Isomap result.

Although this data set is not as good as figure data set, we could still see there is a pattern.
But if we use a figure dataset, it is much easier to detect a pattern.

Twe-dimensional Isomap embedding (with neighborhood graph).

4 5 6 7
Isomap dime nsicnality

Figure 6: 2-D Isomap embed-

Figure 5: Scree Plot ding

ISOmap two dimensional (by class)

1

5

@ 2

Ml © +-;-

+ ﬂ-"
2
ok
+
2}
41
6
8| w
w o o
-10 |
¥ 5 0 5 10 is

Figure 7: ISOmap

The code is as follows.

Problem_2.m = L + l

1 %% Problem 2

2 - clear

3|= close all

4 - clc

5 %% load glass dataset

6 - glassdata = importdata('glass.txt',',', @);

7

8 %%

9 % Then get the interpoint dissimilarity matrix.
10 % We will use standardized Euclidean distance.
11 - tmp = pdist(glassdata, 'seuclidean');

12

13 % Now put it into a square matrix.

14 - D = squareform(tmp);

15

16 % Now we do ISOMAP.

17 % We will define the neighborhood using the number of nearest neighbors, k = 5.
18 - [Y,R,E] = Isomap(D,'k',5);

19

20 - lables = zeros(size(glassdata,1),1);

21 - lables(glassdata(:,11)==1) = '1';

22 - lables(glassdata(:,11)==2) = '2';

23 - lables(glassdata(:,11)==3) = '3';

24 - lables(glassdata(:,11)==5) = '5";

25 - lables(glassdata(:,11)==6) = '6";

26 - lables(glassdata(:,11)==7) = '7';

27

28 - f2_1 = figure; gcplot(Y.coords{2}',lables); axis equal
29 - legend('1','2%,'3",'5','6",'7")

30 - title 'ISOmap two dimensional (by class)'

31 - saveas(f2_1, '/Users/XC/Dropbox/SJSU/Courses/Math 285 Data Modeling/HW/hw2/2 _isomap.jpg',"'jpg')

Figure 8: Code part 1

33 %% compare with mds

34

35 - Y_mds = mds(D, 3);

36 - lables = zeros(size(glassdata,1),1);
37 - lables(glassdata(:,11)==1) = '1';

38 - lables(glassdata(:,11)==2) = '2";

39 - lables(glassdata(:,11)==3) = '3';

40 - lables(glassdata(:,11)==5) = '5';

41 - lables(glassdata(:,11)==6) = '6';

42 - lables(glassdata(:,11)==7) = '7';

43 - f2_2 = figure; gcplot(Y_mds,lables);
44 - legend('1','2','3','5','6','7")

45 - title 'mds two dimensional (by class)"'
46

47 - saveas(f2_2,'/Users/XC/Dropbox/SJSU/Courses/Math 285 Data Modeling/HW/hw2/2 mds.jpg','jpg"')
48

Figure 9: Code part 2

3 Problem 2: Digit Dataset

(1)

(2)

Data: I use the dataset from homework one, the digit datset (mnist-digitl.mat). I picked the
first 1000 data points, and did the following analysis based on these 1000 points. Figure 10 is
the scatter plot of original data.

According to Figure 11, we conclude there is a pattern in this figure. For digits on the upper
left, they are thinner, and pretty much vertical (only a few have a direction: positive slope).
For the digits on the upper right, they are also thinner, but they have a direction (negative
slope). For digits on the bottom left, they are thicker, and they are vertical(only several have
a direction: positive slope). For digits on the bottom right, they are thicker, and they also
have a direction(negative slope).

original data plot
. -

; 2
al & T wR
- " -
.’ '.._';.::_ _-."‘-:-.
3 - . - -
e e I f.n." o Tt
5 Aty T e bt
LA A atmeats ™% g
& n."" e “.l.‘ . s Pl
. i'_...,e" e ¥ 'I'.. .?.J.?‘\.,d'
iy Aty . . ag Yo .-'- e T

1 . . i . " e 2, .

P e - SR B
AR e b P ey e,
- . - - * -

o ._".? La.5 o . W :_"" HY L
-_"- at. v H '.--_. "Jq:'.
P BEL Tan P ERS 2

Qg e T ¥ o Yo LY
1 by 10 ¥ r P
e - . Al
¥
.qf‘-’t. . S] % - g'u.l.’ =
e P B . s late s
P R e . AL
saTh e e
-t » : g
o . L
LY R i
at el 5 . e,
L A Y
U. l..' ..‘
- R
‘.Q 5! - ..
4L]) 1] I
-+ 3 2 1 0 1 2 3 4

Figure 10: Original Data Scatter

Figure 11: ISOmap

(3) Code, as shown in Figure 12

Problem_2.m +
50
51 %% Problem 2 Digit Dataset
52|= clear
53 - close all
54 - clc
55
56 %% load data
57 - load mnist_digitl.mat
58
59 %% pick 1000 observations
60 - X_test = X(1:1000,:);
61
62 % original data plot
63 - figure; gcplot(X_test)
64 - title 'original data plot’
65
66 %% isomap
67 - D = L2_distance(X_test',X_test',1);
68 - [Y,R,E] = Isomap(D, 'k',5);
69 - figure; gcplot(Y.coords{2}');
70
71 %% add image to the figure
72 - cursor_info; a =cursor_info.Position;hold on;
73 - imagesc([a(1l) a(1)+2], [a(2) a(2)+2], reshape(X_test(cursor_info.DataIndex,:), 28,28)); ...
74 - figure(gcf); colormap gray

Figure 12: Code part

4 Problem 3

5 Problem 4

Figure 13 is the original data scatter plot.

Scatter plot 1
T T

4
. W
w
3 » 2 . .
* *
T
*
. -
2+ L
*
*
*
- % *
1'- [. . ™
* . 2 '-"- .
. PR B I AN .
* [s-; =
OF = . W . ..__: " o e
- o »* -
*
Ak _ ,
. LA |
* *
2k e
. * P T
. - *
*
3 L L
-3 2 1 0 1 2 3 4

Figure 13: Scatter plot of original

Figure 14 is the plot for Gaussian Kernel PCA 2-D.

Gaussian Kernel 2-D
T

08 =
06| LI .
g *
04 -t
“r -
. . A
.
02}
. LI L
- LI » »
o
ol 5 % |
¥ .
_—
4 .
. -
02| . -
.
-
04} .
.
* . -
. &
06|
- ="
08 . . L . . .
06 04 02 0 0.2 0.4 0.6 0.8

Figure 14: Gaussian Kernel

Comparing the above two figures, we could find that by using Gaussian Kernel PCA, the two
groups could be seperated very clearly, and we can find a linear boundary between these two groups.

10

The code is as follows.

Problem_4.m

il|= clear
2= close all
3 - clc
4
5 %% load data
&= load kernelpca_data.mat
7
8 %% Gaussian Kernel
9
10 - [D,N] = size(X);
11
12 % calculating distance
13 - D1 = L2_distance(X',X")
14 - D2 = D1.72;
15
16 % calculating sigma
17 - [idx,di] = knnsearch(X,X, 'k',9);
18 - eighth_idx = idx(:,9);
19 - eighth_nb = di(:,9);
20 - sigma = mean(eighth_nb);
21
22 % compute kernel matrix
23 - K = exp(-D2./(2xsigma*2));
24 - J = ones(D,D)/D;
25
26 % Centering kernel matrix (non-linearly mapped data).
21 |= Kc = K = J*%K — KxJ + J*KxJ;
28
Figure 15: Code part 1
28
29 % eigendecomposition
30 - [V,S] = eig(Kc);
31 - [dsort, idum]=sort(diag(S),'descend');
32 - l=abs(dsort);
33 - V=V (:,idum);
34 - 12 = U(1:2);
35
36 % Two dimensional representation of the data obtained by Kernel PCA
37 - X_proj = V(:,1:2) * diag(sqrt(12));
38
39 - f4_1 = figure;plot(X_proj(:,1),X_proj(:,2), 'bx', 'MarkerSize',4);
40 - title 'Gaussian Kernel 2-D'
41 - saveas(f4_1,"'/Users/XC/Dropbox/SISU/Courses/Math 285 Data Modeling/HW/hw2/4_GKernel.jpg','jpg"')
42
43 %% compare original plot and kernel PCA plot
44
45 % original figure
46 - f4_2=figure; plot(X(:,1), X(:,2),"'bx", 'MarkerSize',4)
47 - title 'Scatter plot 1'
48 - saveas(f4_2,"'/Users/XC/Dropbox/SJSU/Courses/Math 285 Data Modeling/HW/hw2/4_ORG.jpg', 'jpg"')
49

Figure 16: Code part 2

11

Figure 17: Three true clusters

6 Problem 5

(a) (i) Figure 17 shows three true clusters, and Figure 18 shows the results using k-means.
(ii)The error percentage of my clustering is 1 — 0.8933 = 0.1067 = 10.67%. I think the error

percentage is a little high. So the result is not very good.

(iii) From the following two figures, we can also tell that the boundary of the left two groups

are not clear (figure 17), which leads to many misclassification in that small area (figure 18)

(iv) By wikipedia, we find that "A key limitation of k-means is its cluster model. The concept

is based on spherical clusters that are separable in a way so that the mean value converges

towards the cluster center. " In this case, the shape of each group in our data is ellipse, so
this method is not a good one for Iris data.

kmeans - dividing three $oups
Three true z:lusters+

v

+

A

o+

4+

LE

+

L L L L L
3 -2 -1 0 1

Figure 18: kmeans - dividing
three groups

(b) Figure 19 shows the scree plot. From this figure, we could find that k=2 or k=3 are both fine.
If we choose k=2, we could find that the two classes (now Virginica and Versicolor are grouped

into one class, setosa is another class) are seperatd clearly. In this case, the misclassification
error should be very small.

Scatter vs K
T T T

scatter

Figure 19: scatter vs k.

The code is as follows.

12

Problem_5.m | + |

1 %% Problem 5
2= clear
3 - close all
4 - clc
5 %% read data
6 - fileID = fopen('iris.txt');
7 - C = textscan(filelID, '%3.1f, %3.1f, %3.1f, %3.1f, %s');
8 - fclose(filelD);
9
10 %% form data matrix and plot data with true labels
11 - X = [C{1:4}]; % concatenate the first four cells to form a matrix
12
13 % true lables
14 - labels = zeros(size(X,1),1);
15 - labels(strcmp(C{5}, 'Iris-setosa')) = 1;
16 - labels(strcmp(C{5}, 'Iris-versicolor')) = 2;
17 - labels(strcmp(C{5}, 'Iris-virginica')) = 3;
18
19 % display the three true clusters
20 - f5_1 = figure; gcplot(X, labels); axis equal
21 - legend('Iris—setosa','Iris-versicolor','Iris-virginica')
22 - title 'Three true clusters'
23 - saveas(f5_1,"'/Users/XC/Dropbox/SJSU/Courses/Math 285 Data Modeling/HW/hw2/5_true.jpg','jpg")
24
25 %% perform kmeans
26 - labels_kmeans = kmeans(X, 3, 'Replicates', 10);
27 - f5_2=figure; gcplot(X, labels_kmeans); axis equal
28 - title 'kmeans - dividing three groups'
29 - saveas(f5_2,"'/Users/XC/Dropbox/SJSU/Courses/Math 285 Data Modeling/HW/hw2/5_kmeans3.jpg', 'jpg"')
30
Figure 20: Code part 1
30
31 %% part a: compute clustering accuracy rate
32 - trueLabels = labels;
33 - accuracy = 1 — computing_percentage_of_misclassified_points(labels_kmeans, trueLabels)
34
35 %% part b: select number of clusters when not given
36 - k=3
37 - scatter = zeros(1,2xk); % vector of total scatter
38 - scatter(1l) = sum(sum((X — repmat(mean(X,1),size(X,1),1)).72,2)); % j =1
39 - for j =2 : 2xk
40 - [~, ~, intravars] = kmeans(X, j, 'Replicates', 10);
41 - scatter(j) = sum(intravars);
42 - end
43
44 - f5_3=figure;
45 - plot(scatter, 'o——"', 'markersize', 14, 'linewidth', 2)
46 - xlabel 'number of clusters'
47 - ylabel 'scatter’
48 - title 'Scatter vs K'
49 - grid on
50 - saveas(f5_3,"/Users/XC/Dropbox/SJSU/Courses/Math 285 Data Modeling/HW/hw2/scatter_k.jpg"',"'jpg")
51

Figure 21: Code part 2

13

