
Ryan Shiroma MATH 285 Homework 2

1: Multidimensional Scaling

(a) Below is the code for the MDS function. It takes the distance matrix X and k dimensions of
the output space, and returns the mapped coordinates Y and its associated Kruskal’s stress.

MDS Function
1 function [Y,stress] = mds(X,k)
2 points=size(X,1); %number of points
3 means=repmat(mean(X),points,1); %
4 l_i_dot=means; % column means
5 l_dot_j=means'; % row means
6 l_dot_dot=ones(points)*mean(mean(X)); % matrix mean
7 l_i_j=X;
8 L=(l_i_dot.^2+l_dot_j.^2−l_dot_dot.^2−l_i_j.^2)/2; %compute the L matrix
9 [U,D]=eig(L); % get the eigen−values and eigen vectors

10
11 reverse=points:−1:1; % sort in descending order (eig() returns ascending order

)
12 U=U(:,reverse);
13 D=diag(nonzeros(D(:,reverse)));
14
15 Y=U*sqrt(D); % compute the Y matrix
16 Y=Y(:,1:k); % pull points in only the first k dimensions
17
18 % KRUSCAL STRESS
19 numerator=0;
20 denominator=0;
21
22 for i=1:points % loop through all rows
23 % Loop through columns from i+1 to the end
24 % To make this loop twice as fast, we only need to calculate the
25 % scores between points we haven't calculated yet.
26 for j=i+1:points
27 numerator=numerator+(X(i,j)−sqrt(sum((Y(i,:)−Y(j,:)).^2)))^2;
28 denominator=denominator+X(i,j)^2;
29 end
30 end
31 stress=sqrt(numerator/denominator); % calculate the final stress number
32 return;

1

Ryan Shiroma MATH 285 Homework 2

Using our MDS function we can now do mutli-dimensional scaling on the Chinese city distance
data. The steps in the script are:
1) Load data
2) Run MDS
3) Rotate the points so that they match the actual map
4) Plot the points

MDS Script
1 load ChineseCityData.mat;
2 [Y,stress]=mds(dists,2); % run the MDS function
3 % We now rotate the mapping so that it looks close to a real map of China
4 % Chongqing and Urumqi seem to be at a 45 degree angle in relation to the
5 % x axis on the map of China, so let's rotate the map to match this.
6
7 a=Y(4,:)−Y(6,:);
8 b=[1000,−1000];
9 rads= −acos(a*b.'/norm(a)/norm(b)) ;

10 rot_matrix=[cos(rads), −sin(rads);sin(rads), cos(rads)];
11 Y=Y*rot_matrix;
12
13 % plot the rotated Y points
14 figure;
15 img = imread('chinamap.jpg');
16 image([−4600 2300],[2000 −2500],img);
17 hold on;
18 scatter(Y(:,1),Y(:,2));
19 axis equal;
20 grid on;
21 text(Y(:,1), Y(:,2), Cities,'VerticalAlignment','bottom','HorizontalAlignment'

,'right');
22 title('2D mapping from a distance matrix');
23 xlabel('km''s from the center'); ylabel('km''s from the center');

1 >> stress
2
3 stress =
4
5 0.0807

The Kruskal stress score was 0.0807 which as a rule of thumb places this in the “good” range.

2

Ryan Shiroma MATH 285 Homework 2

−2500 −2000 −1500 −1000 −500 0 500 1000 1500

−2000

−1500

−1000

−500

0

500

1000

Beijing

Tianjin

Shanghai

Chongqing

Hohhot

Urumqi

Lhasa

Yinchuan

Nanning

Harbin

Changchun

Shenyang

2D mapping from a distance matrix

km’s from the center

km
’s

 fr
om

 th
e

ce
nt

er

The MDS map follows the map of China I found online fairly closely. In theory, these two maps
might’ve lined up exactly since both the MDS map and this image need to project points in R3

into R2. The Chinese map image may be distorted slightly due to the many ways to represent a
map, causing the points not to match up.

Beijing

Tianjin

Shanghai

Chongqing

Hohhot

Urumqi

Lhasa

Yinchuan

Nanning

Harbin

Changchun

Shenyang

2D mapping from a distance matrix

km’s from the center

km
’s

 fr
om

 th
e

ce
nt

er

−4000 −3000 −2000 −1000 0 1000 2000

−2500

−2000

−1500

−1000

−500

0

500

1000

1500

2000

(b) Unfortunately we wouldn’t be able to construct a world map based on locations around the
world. We can “flatten” a smaller portion of the world (like a single country) into a 2D map while
preserving pairwise distance fairly well, but not as well if the points are formed around a sphere.
The Kruskal score to a world airport mapping would probably be very bad.

3

Ryan Shiroma MATH 285 Homework 2

2: ISOmap

(a) Galaxies Dataset The dataset I used was found on kaggle.com. The original goal of this
kaggle.com competition was to measure the ellipticity of the galaxies in the test set. The
ellipticity of a galaxy is a measure of the longest and shortest diameters of the elliptical shape of a
galaxy. The dataset consists of 40,000 48x48 grayscale images of galaxies. I only use the first 600
for this analysis.
I reduced the dimension on this dataset with standard PCA but received a similar output to the
MNIST ones scatterplot from the first homework assignment. It seems that using MDS or
ISOmap would result in a better interpretation.

−3500 −3000 −2500 −2000 −1500 −1000 −500 0 500
−250

−200

−150

−100

−50

0

50

100

150

200

250
data plotted against the first two principal components

(a) Regular-PCA Scatterplot

ISOmap Script
1 % First create an image matrix from the png files. Each png file is a 48x48
2 % grayscale image. I am using the first 600 images from the dataset.
3 file = dir('galaxy');
4 images=zeros(2304,600);
5 for k = 3 : 603
6 images(:,k−2) = reshape(imread(fullfile('galaxy', file(k).name)),2304,1);
7 end
8
9 % calculate the distance matrix

10 D = L2_distance(images, images, 1);
11
12 % Run the ISOmap code
13 options = struct();
14 options.dims = 1:5;
15 options.display = 0;
16 options.overlay = 0;
17 Y_isomap = Isomap(D, 'k', 7, options);
18
19 % Plot the ISOmap output on the first 2 dimensions
20 figure; gcplot(Y_isomap.coords{2}');
21 xlabel('Horizontal Eccentricity');ylabel('Vertical Eccentricity');

4

Ryan Shiroma MATH 285 Homework 2

−1500 −1000 −500 0 500 1000

−1000

−500

0

500

1000

Horizontal Eccentricity

V
er

tic
al

 E
cc

en
tr

ic
ity

After picking points in each of the nine sections of the 2 dimensional representation, it became
clear that the eccentricities of the galaxies were being mapped to the first 2 dimensions of the
ISOmap output. The more to the right you go, the “taller” the galaxy is shown to be. The
further up you go up or down, the “wider” the galaxy is.

5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

40

45

(b) Top Left

5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

40

45

(c) Top

5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

40

45

(d) Top Right

5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

40

45

(e) Left

5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

40

45

(f) Center

5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

40

45

(g) Right

5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

40

45

(h) Bottom Left

5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

40

45

(i) Bottom

5 10 15 20 25 30 35 40 45

5

10

15

20

25

30

35

40

45

(j) Bottom Right

Dataset located at
https://www.kaggle.com/c/mdm/forums/t/738/important-clarification-question

5

Ryan Shiroma MATH 285 Homework 2

3: Dijkstra’s Algorithm

Step 1 Start at Node O.
Create paths to nodes A, B, and C and assign the distances to each node.

Step 2 Since A has the shortest distance, we move to Node A.
Let’s first create paths to node F, D, and B. The distance to B from A is now 4 which is less
than the current distance of 5. We can then replace the distance to B with 4 and remove
the path from O to B.

Step 3 Nodes B and C have the next shortest distances. We’ll arbitrarily choose Node B.
Let’s create paths from node B to nodes C, E, and D. The path to node C through B is the
same as the current distance to C, therefore we can remove this path. The path to D
through node B is 8, which is shorter than the current path from A. We can remove the edge
from A to D as well. Finally, the path to E doesn’t exist yet so we give it the distance of 7.

6

Ryan Shiroma MATH 285 Homework 2

Step 4 The next shortest path is from Node C. The edge from node C to node B is not needed
since we have already seen node B. The distance to node E from node C is 4+4=8 which is
larger than the current distance of 7 so we can disregard that path as well.

Step 5 Node E has the next shortest path. The distance to node D through node E is larger than
the current distance of 8 so we can ignore that edge. The path to node T doesnt exist yet so
we can creat that path with a distance of 7+7=14.

Step 6 Node D has the next shortest distance with a distance of 8. The only node connected to
node D that hasn’t be seen yet is node T. Going through node D, the distance to node T is
only 13, which is less than the current distance of 14 so we can remove the edge from node
E to node T.

7

Ryan Shiroma MATH 285 Homework 2

Step 7 Of the two remaining nodes, T and F, Node T has the shorter distance. The only edge
remaining is the edge from node T to node F. The distance to node F doesnt decrease when
going through node T so we can ignore this final edge.

Done We have now seen all nodes and can now see the shortest paths from node O to any other
node.

Node O to:
A: distance = 2. path: O to A
B: distance = 4. path: O to A to B
C: distance = 4. path: O to C
D: distance = 8. path O to A to B to D
E: distance = 7. path: O to A to B to E
F: distance = 14. path: O to A to F
T: distance = 13. path: O to A to B to D to T

8

Ryan Shiroma MATH 285 Homework 2

4: Kernel PCA

(a) The kPCA function takes the input data (centered or uncentered) and the reduced dimension
k, and returns the Y matrix of points in the dimension k.

Kernel PCA Function
1 function Y = kPCA(X,k)
2 n=size(X,1);
3 X_tilde=X−repmat(mean(X,1),n,1); % compute a centered X matrix
4
5 % This section is used to compute an initial value for the
6 % parameter, sigma
7 dist=zeros(n,n); % initialize the distance matrix
8 for i=1:n
9 for j=i+1:n

10 dist(i,j)=sqrt(sum((X_tilde(i,:)−X_tilde(j,:)).^2));
11 end
12 end
13 dist=dist + dist';
14 mean_sim=mean(sort(dist,1),2); %for each point, sort columns by distance
15 % Taking Dr. Chen's suggestion, we'll take the average of the 8th nearest
16 % neighbor. We use nine here since we don't count the point itself as
17 % a "nearest neighbor"
18 sigma =mean_sim(9);
19
20 % We now can compute the K matrix. We use our own function "RBF" to clean
21 % up the code a little bit.
22 K=zeros(n,n);
23 for i=1:n
24 % Since K is symmetric, we only need to compute an upper triangular
25 % matrix and just add the transpose.
26 for j=i:n
27 K(i,j)= RBF(X_tilde(i,:),X_tilde(j,:),sigma);
28 end
29 end
30 K=K + K'−diag(diag(K));% compute K from the upper triangular K matrix.
31
32 one=ones(n,n); % compute the K tilde matrix
33 K_tilde=K−(1/n)*K*one −(1/n)*one*K +(1/n)^2*one*K*one;
34
35 % find the eigenvalues/vectors that satisfy K*V_i = n*lambda*V_i.
36 % We also need to resort the eigenvectors by largest eigenvalues.
37 [V,D]=eig(K_tilde/n);
38 [~,index]=sort(diag(D),'descend');
39 V=V(:,index);
40
41 % finally compute the Y matrix
42 Y=K*V(:,1:k);
43 return;

9

Ryan Shiroma MATH 285 Homework 2

RBF Function
1 function mapping = RBF(xi,xj,sigma)
2 mapping=exp(−sqrt(sum((xi−xj).^2))/(2*sigma^2));
3 return;

Kernel PCA Script
1 load kernelpca_data
2 % Plot the original data
3 figure;plot(X(labels==1,1),X(labels==1,2),'.b','MarkerSize',10);
4 hold on;
5 plot(X(labels==2,1),X(labels==2,2),'.g','MarkerSize',10);
6 title 'Kernel PCA Data';
7 legend('Inside Cluster','Outside Cluster')
8
9 Y=kPCA(X,2); % Run the kernel PCA function with dimension 2

10
11 % Plot the newly mapped data on the first two dimensions
12 figure;plot(Y(labels==1,1),Y(labels==1,2),'.b','MarkerSize',10);
13 hold on;
14 plot(Y(labels==2,1),Y(labels==2,2),'.g','MarkerSize',10);
15 title 'Kernel PCA Data(Remapped)';
16 legend('Inside Cluster','Outside Cluster')

−3 −2 −1 0 1 2 3 4
−3

−2

−1

0

1

2

3

4
Kernel PCA Data

Inside Cluster
Outside Cluster

(k) Original Data

−0.5 0 0.5 1 1.5 2 2.5 3 3.5
−1.5

−1

−0.5

0

0.5

1

1.5
Kernel PCA Data(Remapped)

Inside Cluster
Outside Cluster

(l) Remapped Data

Figure 1: Kernel PCA

The data can now clearly be separated with lines. This can now be easily clustered without any
issues. We can test whether this is true by running the kmeans script on the next page.

10

Ryan Shiroma MATH 285 Homework 2

k-means clustering on top of Kernel PCA
1 k=2
2 [labels_kmeans,C,scatter] = kmeans(X,k,'Replicates',10);
3 error=computing_percentage_of_misclassified_points(labels,labels_kmeans)
4 figure; gcplot(X, labels_kmeans); axis equal
5
6 [labels_kmeans,C,scatter] = kmeans(Y,k,'Replicates',10);
7 error=computing_percentage_of_misclassified_points(labels,labels_kmeans)
8 figure; gcplot(Y, labels_kmeans); axis equal

Running the k-means code on these data points shows that if we were to cluster the original data
set, we could potentially get an error of 34%. But running k-means on the remapped data set, we
see an error rate of 0%.

−3 −2 −1 0 1 2 3 4

−2

−1

0

1

2

3

(a) Original Data (error = 34.13%)

0 0.5 1 1.5 2 2.5 3

−1

−0.5

0

0.5

1

(b) Remapped Data (error = 0%)

Figure 2: k-means over Kernel PCA

11

Ryan Shiroma MATH 285 Homework 2

5: k-means

(a) Below is the script for the k-means clustering of the Iris dataset. It uses the built-in kmeans()
function in MATLAB.

1 script_read_irisdata
2 n=150;
3 k=3; % set the number of clusters to three
4 [labels_kmeans,C,scatter] = kmeans(X,k,'Replicates',10);
5 error=computing_percentage_of_misclassified_points(labels,labels_kmeans);
6
7 % plot the k−means clusters
8 figure; gcplot(X, labels_kmeans); axis equal
9 legend('Iris−setosa','Iris−versicolor','Iris−virginica')

10
11 % we now want to check k−means for cluster size 1 through 6
12 k=6
13 labels_kmeans=zeros(k,size(X,1));
14 scatter_2=zeros(k,1);
15 for i=1:k
16 [labels_kmeans(i,:),C,sumd] =kmeans(X,i,'Replicates',10);
17 scatter_2(i)=mean(sumd)/(150/i);
18 end
19
20 % Plot the scatter for each k−means model
21 figure;plot(1:k,scatter_2,'bo−');
22 xlabel('K value');ylabel('Scatter'); grid on; hold on;
23 plot(3,scatter_2(3),'o','MarkerSize',20);
24 set(gca,'xtick', [1 2 3 4 5 6])
25 title 'Average within−cluster Error'
26
27 %calculate the percent of variance
28 figure;plot(1:k,(ones(k,1)*scatter_2(1)−scatter_2(1:k))./(ones(k,1)*scatter_

2(1)),'bo−')
29 xlabel('K value');ylabel('Variance'); grid on; hold on;
30 plot(3,(scatter_2(1)−scatter_2(3))/scatter_2(1),'o','MarkerSize',20);
31 set(gca,'xtick', [1 2 3 4 5 6])
32 title 'Percentage of Variance for k clusters'

1 >> error
2
3 error =
4
5 0.1067

The error percentage on k-means cluster with k = 3 is 10.67%. Only 9.33% of the data points are
misclassified as the wrong type of iris. This error rate can be considered good depending on the
model’s application.

12

Ryan Shiroma MATH 285 Homework 2

−3 −2 −1 0 1 2 3
−1.5

−1

−0.5

0

0.5

1

1.5

Iris−setosa
Iris−versicolor
Iris−virginica

(a) Actual clusters (Iris types)

−3 −2 −1 0 1 2 3
−1.5

−1

−0.5

0

0.5

1

1.5

(b) k-means clusters with k = 3 (error = 10.67%)

Figure 3: k-means clustering with k = 3

1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

K value

S
ca

tte
r

Average within−cluster Error

(a) Elbow at k = 3

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

K value

V
ar

ia
nc

e
Percentage of Variance for k clusters

(b) Elbow at k = 3

Figure 4: Choosing a value for k

What we see in the error and variance graphs is that there’s an elbow at k = 3 clusters. This
indicates that we should choose k to be three (which matches the actual number of clusters). The
percentage of the variance explained by the clustering hits nearly 90% and slowly increases with
larger numbers of clusters. We see the same idea in the average within-cluster error.

13

