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Matrix Algebra

Introduction

Matrices are two dimensional arrays of real numbers that are arranged along
rows (first dimension) and columns (second dimension):

a1 aiz - QAip
a21 Az - A2

A= =lajas ... a,).
Am1 Am2 e Amn

We denote matrices that have m rows and n columns by A € R™*"  and say
that the size of the matrix is m x n.

Vectors can be regarded as matrices with size n x 1 (column) or 1 X n (row).

Sometimes, we also use notation like A = (ai;)1<i<m,1<j<n, OF even A = (a;;).
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Matrix Algebra

Special matrices

We say that A is a square matrix if m = n (i.e., equally many rows and columns).

Diagonal matrices are square matrices whose only nonzero entries are in the
main diagonal of the matrix

a1
A= +— empty spaces indicate zero
ann
An identity matrix is a diagonal matrix with constant value 1 along the diagonal:

I, = diag(1,...,1) e R™*™,

Lastly, a zero matrix is a matrix with all entries being 0, and denoted as O.
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Matrix Algebra

Matrix operations

Scalar multiple of a matrix

Matrix-vector product

Adding two matrices of the same size (also letting them subtract)

Multiplying two matrices of “matching” sizes
e Transpose of a matrix

e Inverse of a square matrix
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Matrix Algebra

Def 0.1 (Scalar multiple). Let r be a real number and A € R™*™. Then
B = rA is defined as a matrix of the same size with entries b;; = ra;;.

In matrix form, this is

raii rai cee rain
ragy a2 cee ragy

rA=| | o | ermxn
rQm1 TAm2 - TQmn
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Matrix Algebra

Def 0.2 (Matrix sum/difference). Let A,B € R™*". Then the matrix sum
C = A + B is defined as a matrix of the same size with the following entries

C=(cy),  cij=ay+by

In matrix form, the above definition becomes

a1 +bi1  ai2+biz - ai, +biy
a1 +ba1  aga by - ag, +ba,

A+B= _ _ . _ e R™*"
Gm1 +bm1 Gm2+bma - Amn + bmn

Remark. The difference of two matrices, A — B, is defined similarly (with every
+ sign being changed to - sign).
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Matrix Algebra

Example 0.1. Let

1 2 3
4 5 6

A:

,B:_l_l_l.
1 1 1

Find A+ B,A - B,3B and A + 3B.
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Matrix Algebra

The scalar multiple of a matrix and matrix sum satisfy the following commutative,
associative and distributive laws.

Theorem 0.1. Let A, B, C be three matrices of the same size and r, s be scalars.
Then

e A+B=B+A

¢ A+0O0 =0+ A = A (O is the zero matrix of same size)

(A+B)+C=A+(B+C)

r(sA) = (rs)A
e r(A+B)=rA+rB

e (r+s)A=rA+sA

Prof. Guangliang Chen | Mathematics & Statistics, San José State University 9/75



Matrix Algebra

Matrix-vector product

Def 0.3. Let A € R™*™ and x € R™. Their product is defined as a vector
y € R™ of the following form

ail  aiz - Qlp a11%1 + a12%2 4+ - + A1 Ty
1
T2 )
Yy=Ax=|an ap - ap = i1T1 + Q%2 + -+ ATy
Tn
[@m1  Am2 - Omn | | Am1T1 + amoTe + -+ AmnTn |

In compact notation,

n
y=(y;) € R™, with yi:Zaijxj, 1<i<m
j=1
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Matrix Algebra

Alternatively (as we have already seen previously), we can multiply a matrix and
a vector in a columnwise fashion.

Theorem 0.2. Let A =[a;...a,] € R™*" and x € R™. Then

Z1
Ax=la;...a,] | | | =z a1+ -+ 2, ap.
Tn
Proof. By definition,
1171 + -+ - + A1 Ty 1171 A1nTn
2171 + -+ -+ A2pTy 2171 A2nTn,
Ax = . = . +- -+ . =xaj+ - +ra,.
Am1T1 +---+ AmnTn Am1T1 AmnTn

Prof. Guangliang Chen | Mathematics & Statistics, San José State University 11/75



Matrix Algebra

Two properties about matrix-vector multiplication

Theorem 0.3. Let A € R™*™ and x,y € R"™ and r € R. Then
e A(x+y)=Ax+ Ay

o A(rx) =r(Ax)

Remark. They were needed for showing that transformations of the form f(x) =
Ax must be linear.
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Proof. By the columnwise way of multiplying a matrix and a vector,
1+
Ax+y)=lar...a,] :
Ty + Yn
= (z1 +yar + -+ (Tn + yn)a,
= (z1a1 + -+ 2pa,) + (Y121 + -+ ypay)

= Ax + Ay.

Similarly,
TT1

A(rx)=[a;...a,] | : | =(rz)ar+---+ (rep)a, =r(via1 + - +z,a,) .
TTpn Ax
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Matrix Algebra

A third property about matrix-vector multiplication

Theorem 0.4. Let A,B € R™*" and x € R™. Then

(A4 B)x = Ax + Bx.

Proof. Let A =a;y,...,a,] and B = [by,...,b,]. Then
A+B=[a;+Dby,...,a, + by,
It follows that

(A+B)x =z1(a; +b1) + -+ z,(an +by)
= (x1a1 + -+ zpa,) + (11b1 + - - + 2,by)
= Ax + Bx.
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Matrix Algebra

Matrix-matrix multiplications

Def 0.4. Let A € R™" and B ¢ _J J
R™*P. Their product is defined as a
. ir p; u. i .|n C _ A B
matrix C € R™*P with entries oo
A 1
Cij = [a“ e am]
bn;
m Xp mXn nxp
= ai1byj + -+ ainbn;
i Remark. The matrix-vector product is
= just the special case of p = 1.
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Matrix Algebra

Example 0.2. Let

1
A= 123 , B=[1 -1
4 5 6
0
Find AB and BA. Are they the same?
Example 0.3. Let
A:22,B:1 -1 2‘
3 3 -1 1 =2

Find AB. Is BA defined?
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Matrix Algebra

WE’ does Mor?heus kee?
aSkinj Yeoyle if H"?j work
from home?

Tt dangerous 10 assume

that they commute.
(Taken from https://mathwithbaddrawings.com/2018/03/07/matrix-jokes/)

Prof. Guangliang Chen | Mathematics & Statistics, San José State University 17/75




Matrix Algebra

WARNINGS

e There is no commutative law between matrices: AB # BA.. In fact, not
both of them need to be defined at the same time.

e |f AB = O, then we cannot conclude that A = O or B = O.

e There is no cancellation law, i.e., AB = AC does not necessarily imply
B=C.

Can you give an example for the last statement?
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A small, useful result on matrix-matrix-vector product
Theorem 0.5. Let A € R™*™ B € R"*P and x € RP. Then
(AB)x = A(Bx).
Proof. We compare the entries of both sides. For any 1 < i <m,
((AB)x), = Z (AB);jz; = Z Zalkbk]xj
= Zalk Zbkj:c] Zaik (Bx)r = (A(Bx)), .
k

Remark. The right hand side is much more efficient to compute, especially when
having large matrices A, B.
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Matrix Algebra

Matrix computing in Matlab (optional)

See the following lecture:
https://www.sjsu.edu/faculty/guangliang.chen/Math250/lec2matrixcomp.pdf

Matlab scripts available on the Math 250 course page:
https://www.sjsu.edu/faculty/guangliang.chen/Math250.html
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Matrix Algebra

The columnwise matrix multiplication (very important)

Theorem 0.6. Let A € R™*™ and B € R"*P. Then
C=AB = Ab;...b,] =[Ab; ... Ab)]

This shows that for each j = 1,...,p, the jth column of AB is equal to A times
the jth column of B.
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Matrix Algebra

Properties of matrix multiplication

Theorem 0.7. Let A € R™*™. Then
e A(BC)=(AB)C (for B € R"*? C € RP*9)
e AB4+C)=AB+AC (for B,C € R"*?)

(B+C)A=BA+CA (for B,C € R&™)

r(AB) = (rA)B = A(rB)  (for B € R"¥?)

I.A=AIL, =A.

Proof. Enough to compare columns. O
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Example 0.4. Compute the following product
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Matrix Algebra

Matrix powers

Def 0.5. Let A € R™*™ be a square matrix and k a positive integer. Then the
kth power of A is defined as

AF=A A .. A.

k copies

Example 0.5. Let

A:11
1 1

010
, B=10 0 1
00 0

Find A3 and B3. What are A* and B for k > 37
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Matrix Algebra

Transpose of a matrix

Def 0.6. Let A € R™*" be any matrix. Its transpose, denoted as A7 is defined
to the n X m matrix B with entries b;; = a;;.

Remark. During the transpose operation, rows (of A) become columns (of B),
and columns become rows.

transpose
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Matrix Algebra

Example 0.6. Find the transpose of the following matrices:
1 2 3 2 4 L
[4 5 6] ’ [4 1]’ 3
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Properties of the matrix transpose

Theorem 0.8. Let A, B be matrices with appropriate sizes for each statement.
o (ATYT = A
e (A+B) =AT +B”
e For any scalar r, (rA)T =rAT
e (AB)T = BTAT (not the other product ATBT, which may not even be

defined)

Proof. The first three are obvious. To prove the last one, check the ij-entry of
each side. We show the work in class. O
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Matrix Algebra

Matrix inverse
Just like nonzero real numbers (a € R) have their reciprocals (1), certain (not
all) square matrices have matrix inverses.

Def 0.7. A square matrix A € R" is said to be invertible if there exists another
matrix of the same size B such that

AB =BA =1,.

In this case, B is called the inverse of A and we write B = A~1 (A is also called
the inverse of B).
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Matrix Algebra

92 -7 —
Example 0.7. Verify that A = l 3 57 and B = 37 25 are inverses

of each other and then use this fact to solve the matrix equation Ax = b for

b:H
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Matrix Algebra

From the previous example, we can formulate the following theorem.

Theorem 0.9. Consider a matrix equation Ax = b where A € R"*" s a square
matrix. If A is invertible, then for any vector b € R"™, the system has a unique
solution x = A~ 'b.

Proof. Since A is invertible, its inverse A~! exists and we can use it to multiply
both sides of the equation

A ' (Ax)=A"'b

By the associative law,

(AT'A)x=A""b
N—_——
I

which yields that
x=A"1b.
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lllustration of A~—' as a transformation

A—l
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Properties of matrix inverse

Theorem 0.10. Let A, B be two invertible matrices of the same size. Then
e (AH)l=A
o (AT)"1= (AT
e For any nonzero scalar r, (rA)~! = 1A~!

e (AB)"! =B~!A~! (not the other product A~ 'B~')

Proof. We verify them in class. O
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The Invertible Matrix Theorem (part 1)

“For a square matrix, lots of things are the same.”

Theorem 0.11. Let A € R™*"™ be a square matrix. Then the following statements
are all equivalent:

1) A is invertible.

2) There is an n x n matrix C such that CA =1.

(
(
(3) The equation Ax = 0 only has the trivial solution.
(4) A has n pivot positions.

(5

) A is row equivalent to I,,.
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Matrix Algebra

The Invertible Matrix Theorem (part 2)

Theorem 0.12. Let A € R™*"™ be a square matrix. Then the following statements
are all equivalent:

(1) A is invertible.

(6) There is an n x n matrix D such that AD = 1.

(7) The equation Ax = b (for any b) is always consistent.
(8) The columns of A span R™.

(9) The linear transformation f(x) = Ax (from R™ to R™) is onto.
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Matrix Algebra

The Invertible Matrix Theorem (part 3)

Theorem 0.13. Let A € R™*"™ be a square matrix. Then the following statements
are all equivalent:

(1) A is invertible.
(10) AT is invertible.

(3) The equation Ax = 0 only has the trivial solution.
(11) The columns of A form a linearly independent set.

(12) The linear transformation f(x) = Ax is one-to-one.
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Matrix Algebra

Summary

Let A € R™ "™ be a square matrix.
If A is invertible, then all of the following statements are true.

Conversely, if any of the following statement is true, then A must be invertible.

(2) There is an n x n matrix C such that CA =1.

(6) There is an n x n matrix D such that AD = 1.
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Matrix Algebra

(3) The equation Ax = 0 only has the trivial solution.

(7) The equation Ax = b (for any b) has at least one solution.

(8) The columns of A span R™.

(11) The columns of A form a linearly independent set.

(9) The linear transformation f(x) = Ax (from R™ to R"™) is onto.

(12) The linear transformation f(x) = Ax is one-to-one.
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Finding matrix inverse

First consider 2 x 2 matrices

A:lg g].

If ad — bc # 0, then A is invertible and its inverse is given by the following

1 d —b
Al = . .
ad — be l—c a ]

Example 0.8. Use the above rule to find the inverse of

2 5
-3 -7

empirical rule

A_:
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In general, given an invertible matrix A € R"*™ (for any n), finding its inverse is
equivalent to solving the matrix equation

AX =1,, or equivalently A[xi,...,X,] =[e1,...,€ey]
This leads to n separate systems of linear equations:

Ax; =e; (ie. [Aler]), ..., Ax,=e¢, (ie. [A]|e,]).
which may be solved simultaneously:

[A]|[er,...,en)]=[A|L,] — [L,| A7)
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Matrix Algebra

Example 0.9. Find the inverse of the matrix

1 0 -2
A=[3 1 -2/,
-5 -1 9

if its exists.
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Partitioned matrices

A partitioned matrix, also called a block matrix, is a matrix whose elements
have been divided into blocks (called submatrices).

For example,

12 3|0 0
45 6|0 0
A11A12
00 0|7 8
A: :A21A22
11 1]0 0 e
2 2 20 0 3L as2
'3 3 3|0 0]

Partitioned matrices are very useful because they reduce large matrices into a
collection of smaller matrices (which are easier to deal with).
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Addition and scalar multiplication

If two matrices A, B have the same size and have been partitioned in exactly the
same way, then we can just add the corresponding blocks to get their sum (with
the same partition):

A A Bii B A+ Bir Az + Bia
A+B=| Ay Ay |+ | Bayr By | = | Aai +Ba Ay + Bap
Aszr Az B3y Bsp Asz1 + B31 Asz + Baa

The scalar multiple of a partitioned matrix is

’I“All TA12
rA = T‘Agl 'rA22
rAzr rAsz
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Multiplication of partitioned matrices: simple cases

Let A € R™*™ B € R™*P be two matrices that may be multiplied together.

When the columns of A and rows of : : By
B are divided in a conformable way, we | A;p 1 A A [l =
can carry out block multiplication: : : By

AB = A1 B11 + A12Bo1 + A13Bs; B

Remark.
o All terms AB,AllBll, A12B21,A13331 are m X p matrices.

e Such partitions do not show up in the product matrix.
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Example 0.10. Let

1 -1

12 3]0 0 1 -1
A=|4 5 6|0 0], B=|1 -1
78 9/0 0 1 -1

1 -1

Find AB using two ways: (a) direct multiplication (b) block multiplication.

Answer.
6 -6 1 2 3 1 -1 0 0 1 —1
AB=|15 =15 | =4 5 6 1 -1 |+]0 O -[1 _1]
24 —24 7 8 9 1 -1 0 0
3x2 3x2 3x2
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A joke

How does a mathematician change three light bulbs at the same time?

He gives them to three engineers and ask them to do it in parallel.
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Multiplication of partitioned matrices: more general cases

Let A € R™"™ B € R" P be two
matrices that are partitioned in a con-
formable way (i.e., column partition of
A matches row partition of B).

Regardless of the row partition of A
and column partition of B, we can carry

R . Remark. Row partition of A + column
out block multiplications by treating the

partition of B = partition of AB (such

blocks as numbers. .
two partitions do not need to match).
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Matrix Algebra

In terms of math symbols, that is

A A Agg Bii B
AB = A21 A22 A23 : 321 B22
Az Az Ass Bsy  Bsp

[ A11Bi1 + A12Bo1 + Ai13Bs1 A11Bia + A12Bas + A13 B3
= | Ao1B11 + A22Boy + AgsBs1 A2 Bia + AzaBos + A3 Bso
| AsiBi1 + AsaBoy + AssBsi As1Big + AsaBao + As3Bsy

In the above, we can think of A as a 3 x 3 partitioned matrix and B as a 3 x 2
partitioned matrix, so that we must obtain a 3 x 2 partitioned matrix.
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Example 0.11. Verify that

1 -1

1 2 3/0 0 1 -1 6 —6

45 6[0 0 1 -1 |=|15 -15

78 9|0 0 1 -1 24 24
1 -1
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Matrix Algebra

Example 0.12. Show that

¥ 0
O 0O

Vi

=U,2V
Vs 12 V1

5 ]

(assuming all submatrices are compatible with each other)
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Matrix multiplication again

The columnwise multiplication of two compatible matrices A € R™*" B € R"*P
actually has already used simple partitions of matrices:

AB = A[b;...b,] = [Ab; ... Ab,]
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We present two new ways of performing matrix multiplication:

e Rowwise multiplication

Ay AB
A A,,B
where Aq,..., A, are the rows of A.
A g B |~ :

Prof. Guangliang Chen | Mathematics & Statistics, San José State University =~ 51/75



Matrix Algebra

e Column-row expansion

AB:[al...an] . =a1B1+---+a,B,

>
e o o 0
Il
+
+
+
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Matrix Algebra

1 2 3

15 6 by using

1
Example 0.13. Find the product of A = l ] and B= |1
1

o o O

three different ways:
(a) Columnwise multiplication
(b) Rowwise multiplication and

(c) Column-row multiplication
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Block diagonal matrices

Def 0.8. A matrix is said to be block diagonal if it is of the form

Aqy
A A
Example 0.14.
1 2 3
4 5 6
7 89
1 1
2 2
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Theorem 0.14. Let A,B be two block diagonal matrices with conformable

partitions:
A B
A= |71 | B |P1 5
Then we have
A B
AB = | AP AosBo|
Proof. By direct verification. O

Remark. This formula also generalizes to three or more blocks.
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The previous result immediately implies the following.

Theorem 0.15. For a block diagonal matrix

A — All ’

A22

if the two blocks are both square and invertible, then A is also invertible. Moreover,

-1
All

Al =
Ay

Proof. By direct verification. O
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Example 0.15. Find the inverse of

—_ =
w N
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Block upper triangular matrices

Def 0.9. A matrix is said to be block upper triangular if it is of the form

A A

A =
A22

Example 0.16.

~N &~ =
oo ot N
O W

N =W O =
N H|Ww = O
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Theorem 0.16. For a block upper triangular matrix

All A12

A =
A22

)

if the two main blocks are both square and invertible, then A is also invertible,
and

-1 -1 -1
A11 _A11 A12A22

Al =
Az

Proof. By direct verification. O
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Example 0.17. Find the inverse of

==
w N
I e
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LU decomposition

In this part, we will derive a factorization scheme to express a given matrix
A € R™*"™ as a product of two matrices of special forms

1 ¥ % % % %
A_L.U~— * 1 * ok ok %
* ok ok 1 *

where L € R™*"™ is square, lower-triangular with 1's on the diagonal (called unit
lower triangular), and U € R™*™ is the REF of A (which is upper triangular).

Such a factorization is very useful for solving linear systems Ax = b.
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For example, the following is an LU decomposition (verify this):

3 =7 =2 1 3 =7 =2

-3 5 1|1 =(-1 1 . -2 -1

6 —4 2 -5 1 -1
A L U

To use it to solve the system of linear equations
T
Ax=b, where b= [—7 5 2}

we first rewrite the equation as

Ax=(LU)x=L(Ux)=b
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and then solve two simper systems in the order

Ly=b AN Ux=y

T
That is, from the first equation, we obtain that y = [—7 —2 6] and then

T
use it to solve the second equation for x = {3 4 —6} (work done in class).

3 -7 =2 3 -7
Verify: | -3 5 1 41 =15
6 —4 0 —6 2

However, how to find such a decomposition in the first place will require the
introduction of the so-called elementary matrices.
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Elementary matrices

Elementary matrices are (square) matrices that can be obtained from the identity
matrix through a single elementary row operation.

i J
1
1 1
1 1 1
1 r k 1
Ml(T) RM_](]C) sz
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Performing an elementary row operation on a given matrix can now is equivalent
to matrix multiplication (the elementary matrix left multiplies the given matrix).

e M;(r) - Multiply row i by a nonzero scalar r

1 a1l a2 a3 a4
M3(7‘)A = 1 a21 as2 a3 a24

r az1 asz2 a3z 34
a11 a2 a13 14

- a21 a22 a23 24
rasy Trasz 1ass 1asq
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e R, (k) - Add a scalar multiple (k) of one row (j) to another row () to
replace that row (2):

— Downward replacement

1 a1 a2 a3 a4
Rz 1(k)A = 1 a1 G2 G23 G4
L 1| |as1 a32 az3 ass
aiy a2 ais a14
= asy ago ass az4
kair +az1  kaia +aze kaiz+azz kais +asq
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— Upward replacement

Ry 3(k)A

1 El lair a2 a1z au
1 G21 Q22 Q23 Q24

i 1| |as1 as2 a3z as4

a11 + kazr a1z +kaza a3+ kazz aps+ kasg
as a2 as3 a2y
asy asp ass asy
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e Interchange two rows

P12A =11 a1
1] |as

1 all
Pi3A = 1 az
1 azy

1 a1
Py A = 1| a2
1 asy

a12
a2
as2

a2
a22
as2

a2
a22
a32

a13
a23
ass3

@13
a23
a33

a13
a23
az3

a14
24
a34

a4
24
as4

a14
a24

asz4

az1
a11
a31

a31
a21
a11

a11
asq

az1

@22
a12
a32

a32
a22
a12

a12
as2
@22

a23
a13
a33

as3
a23
a13

a13
a33
a3

24
14
34

34
a24
14

a14
34

24
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An important fact

Elementary matrices are all invertible (because elementary row operations are all
reversible)

M;(1/r) - My(r) =1
Rij(=k)-Rij(k) =1
P, -P;j=1

and their inverses are the same kind of elementary matrices!

M, (r) ! = M;(1/r)
Ri (k)" = Ric;(—Fk)
P '=Py
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Matrix Algebra

Application of elementary matrices in finding matrix inverse

Previously we presented a procedure for finding the inverse of a square, invertible
matrix

elementary row operations _
> [L, | A7)

(A1,
This is equivalent to using a sequence of elementary matrices E1,Es, ..., E; to
left multiply the augmented matrix:

E; Ey, E - [A|L]=[L, | A7
Through matrix block multiplication, we obtain
[E;---EoE1A |Ep-- - EoE| = [I, | A7}

This shows that
AT =E, - EE;
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Matrix Algebra

Application of elementary matrices in finding matrix REF

Similarly, give any matrix A € R™*"™, one can perform a sequence of elementary
row operations through corresponding elementary matrices E1,Eo, ..., E; to
transform the given matrix into its REF

E;,---EcE;A=U
This yields that

A=(E; EE)'U=E'E;'--.E;'U
N——————

elementary matrices

Note that U (as REF) must be upper triangular.
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Matrix Algebra

Existence of the LU decomposition

In some cases, one only needs to use a sequence of downward replacement
operations (i.e., R;j;(k) for j < 1) to transform a matrix A € R™*™ into its
REF U € R™*™, That is,

E/;---E.E, A=U
—_————
all downward replacements
Then
A= E'E;'---E;' U= L U
~— ~—~

also downward replacements lower triangular REF

Remark. In other cases, one can always rearrange the rows of A in a way such
that an LU decomposition exists.
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Finding the L matrix

When a matrix A € R™*" has an LU decomposition, we can find it as follows:

E,---E;EiA= U
REF
E; - -E;E,L = I +— L=E{'E;' - -E;'

identity matrix
That is, we will try to design a matrix L (lower triangular with 1's on the diagonal)

so that the same row operations performed on A toward its REF will transform
L into the identity matrix.
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Example 0.18. Find the LU decomposition of

3 =7 =2
A=1|-3 5 1
6 —4 0
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Example 0.19. Find the LU decomposition of

1 -2 -4 -3
2 =7 =7 —6
-1 2 6 4
-4 -1 9 8
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