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ABSTRACT

We extend recent work that models the background in hy-
perspectral images by a single distribution (Gaussian or sub-
space) to use a mixture of such distributions. This seems
to better capture the complexity of the background, which
often consists of heterogeneous regions (e.g., sky, mountain
and ground). We derive mixture versions of the previous es-
timators and apply them to benchmark data sets for detect-
ing chemical plumes of known chemicals in hyperspectral
images and movies. Our experiments show that the mix-
ture background models consistently outperform their coun-
terparts with a single distribution.

1. INTRODUCTION

Hyperspectral imaging technology has been increasingly used
in many civilian and military applications to remotely sense
chemical clouds that are often toxic and come from various
sources (e.g., due to natural disasters or terrorism attack).
It collects radiance data from the physical scene through
specially-designed hyperspectral imaging sensors and stores
them in the form of m×n×p arrays, where m,n correspond
to the spatial dimensions and p the spectral dimension. Un-
der physically reasonable assumptions and simplifications,
the following linear mixing model is commonly adopted for
radiance data at all pixels x ∈ R

p of the scene:

x =
∑

1≤i≤NG

gisi + v.

Here, NG is the number of chemicals, si the radiance spec-
trum for the ith chemical, gi the coefficient, and v the radi-
ance spectrum of the background. In practice, it is usually as-
sumed that NG ≤ 3. In this paper, due to the data under con-
sideration, we focus on the case NG = 1 (thus, x = gs+ v).

To effectively separate the chemical plume from the back-
ground clutter, one needs to choose a proper model for the
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background radiation v. Current approaches represent the
background by either a single Gaussian cloud

v ∼ N(mb,Σb)

or a single subspace

v = Bα+ e, e ∼ N(0, σ2
bI)

and then derive corresponding statistical estimators which as-
sign detection scores to the pixels (see the review paper [2]).
These two considerations have lead to, respectively, the Nor-
malized Matching Filter (NMF) detector (also known as the
Adaptive Cosine Estimator or, in short, ACE) [4]:

TNMF(x; Σb, s) =
(sTΣ−1

b x)2

(sTΣ−1
b s)(xTΣ−1

b x)
,

and the Normalized SubSpace (NSS) detector [3]:

TNSS(x;B, s) =
‖(I−B(BTB)−1BT )x‖2
‖(I−A(ATA)−1AT )x‖2 ,

where A = [s,B] is the concatenated matrix.
While these detection algorithms have shown their effec-

tiveness in many applications, there is still room for improve-
ment. In particular, the background often consists of hetero-
geneous regions (such as sky, mountain, desert) which may
require a separate Gaussian cloud/subspace per region to bet-
ter capture the complexity of the background. Here, we ad-
dress this generalization to enhance the detectability of the
chemical gas region.

We consider two different scenarios: (I) only a single hy-
perspectral cube is available to us and (II) we have access to
a time series of hyperspectral images. In the former setting,
we use the available cube for both background learning and
chemical detection, while in the latter one, we use the first
few frames (assumed to have no gas) for background model-
ing and any subsequent frame for testing based on the learned
background model. While the temporal dimension provides
additional information, we make no use of it in the approach
presented in this paper. We comment that this makes the prob-
lem much harder (as the temporal information is abandoned),
but the solution more general (e.g. it applies to still images).



2. ALGORITHM

2.1. Mixture Models

To better represent the complex background, we propose to
use Gaussian mixture models v ∼ ∑

j πjμj , where πj > 0
are coefficients with

∑
πj = 1, and μj represent probability

measures associated to normal distributions N (cj ,Σj) with
centers cj and covariance matrices Σj . We are particularly
interested in the case where the Σj are all rank-deficient, and
therefore each N (cj ,Σj) is supported on an affine subspace.
More generally, we can assume a subspace mixture model
v ∼ ∑

j πjμj where each μj is a probability measure with
support contained in a low dimensional subspace passing
through cj and spanned by basis Bj . The model parame-
ters Θj in each case, (cj ,Σj) or (cj ,Bj), can be estimated
by K-means, K-means-like subspace clustering algorithms
(e.g. [5]), fast multiscale techniques [7], or Expectation-
Maximization (EM) methods. We may then adapt the estima-
tors reviewed in [2] for use with the mixture models: A signal
x is assigned to the jth cluster by maximizing the probability
p(x|Θj). Then, given a target signature s for the chemical
cloud, the mixture versions of the two estimators, NMF and
NSS, are given by,

TmixNMF(x) = TNMF(x; Σj , s),

TmixNSS(x) = TNSS(x;Bj , s).

Alternatively, for the subspace mixture model, we may solve
for g by least squares: let β̂ = (AT

j Aj)
−1AT

j x, where Aj =

[s,Bj], and let ĝ be the first entry of β̂. This yields the mixture
Linear Coefficient estimator TmixLC = max{ĝ, 0}.

We summarize the above steps in Alg. 1.

Algorithm 1 Mixture-models based detectors

Input: {I(�)}1≤�≤L ⊂ R
mn: L hyperspectral frame(s), s ∈

R
p: chemical gas signature, Tmix: mixture-estimator (one

of the three proposed above)
Output: {Tmix(I

(�))}1≤�≤L: pixelwise detection scores
1: Fit a corresponding mixture model {Θj} to the first frame

I(1).
2: for each frame � = 1, . . . , L

• Assign the pixels of I(�) to nearest component
models Θj by maximizing p(x|Θj)

• Evaluate Tmix at all pixels (within corresponding
clusters) to produce detection scores for frame �

end for

2.2. Computational Complexity

In mixture models, a segmentation of the spatial pixels is in-
volved. Apparently, its complexity depends on the method we
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Fig. 1. Left: the mean radiance of sky and ground. Right: the
absorption of the gas.

choose for segmentation: with the algorithm in [5], it is of the
order O(c1 ·m · n · (d · p+ c2 + log(m · n))), where d is the
intrinsic dimension of the subspaces, c1 and c2 are two param-
eters of the algorithm (typical choices for our case are e.g., 10
and 20 respectively). The number of operations for comput-
ing the estimators TmixNMF, TmixNSS , TmixLC are respectively
of the order O(p2), O((p+ d) · d2) and O((p+ d) · d2).

3. EXPERIMENTAL RESULTS

3.1. Simulations

We first use simulated data to demonstrate the performance
of the proposed detection algorithms. First, radiance mea-
surements at 68 different wavelength values are generated
for 5, 000 pixels in the sky from N (c1,Σ1) and for 5, 000
pixels on the ground from N (c2,Σ2), where c1, c2 are taken
from the MIT Lincoln Lab Challenge Data (see details in
the next section) and are shown on the left of Figure 1,
Σ1 = diag{σ2

1,1, · · · , σ2
1,68}, Σ2 = diag{σ2

2,1, · · · , σ2
2,68},

and all σi,j are drawn i.i.d. from the uniform distribution on
[0.002a, 0.008a] with a = max(c2). Then, we take a chemi-
cal gas from the MIT Challenge Data and display its absorp-
tion signature s on the right of Figure 1. With this chemical,
we generate radiance measurements for 1, 000 pixels on the
ground with gas plume as gs+ v, where v ∼ N (c2,Σ2) and
g ∼ N (−0.01, 0.001). On the top left of Figure 2, radiance
against wavenumber is plotted for 5 samples each from the
groups of sky, ground and ground with plume. We compute
the ACE statistic TmixNMF using the truth values of ci and Σi

with i = 1, 2 as well as TNMF using c = (c1 + c2)/2 and
Σ = (Σ1+Σ2)/2 for all pixels. These ACE scores of 10 sam-
ples are displayed on the top right of Figure 2. At the bottom
of Figure 2, we show the histograms of the ACE statistics for
using 1 Gaussian on the left and 2 Gaussians on the right. The
histograms are colored by groups of sky, ground and plume.
From this figure, we see that the ACE scores of plumes are
larger than those of only sky or ground when we use two
Gaussians instead of only one Gaussian. This is consistent
with our understanding of the ACE algorithm, i.e., radiance
with plume is of a smaller angle from the gas signature and
thus has a larger value of the ACE statistic.
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Fig. 2. Top left: radiance against wavenumber of 5 samples
each from the groups of sky, ground and plume. Top right:
the ACE scores of 10 samples computed by 1 Gaussian and
2 Gaussians respectively. Bottom left: histogram of the ACE
scores of using 1 Gaussian. Bottom right: histogram of the
ACE scores of using 2 Gaussians.

Next, we conduct a similar experiment to illustrate the
performance of the mixture subspace model. We generate ra-
diance measurements at the same 68 wavenumbers for 5, 000
pixels in the sky from hc1+ ε and 5, 000 pixels on the ground
from hc2 + ε, where h ∼ N (1, 0.01), ε ∼ N (0,Σε), Σε =
diag{σ2

ε,1, · · · , σ2
ε,68} with the σε,j being drawn i.i.d. from

N (0, 0.005max(c2)). The radiance measurements of 1, 000
pixels on the ground with plume are generated as gs+hc2+ε
with g ∼ N (−0.01, 0.001). Figure 3 shows 5 samples each
from the groups of sky, ground and plume on the top left.
We then compute the statistic for the algorithm NSS and mix-
ture NSS by using the ground truth. More precisely, we let
Bi = ci for i = 1, 2, and B = (c1 + c2)/2. These statistic
scores are displayed on the top right of Figure 3. At the bot-
tom of Figure 3, we show the histograms of the NSS statistics
for using 1 subspace on the left and 2 subspaces on the right.
The histograms are colored by groups of sky, ground and
plume. Using the mixture subspace model, we obtain larger
NSS scores for the plume pixels; the separation between the
plume and other regions is also much more obvious.

3.2. Real data

Real data sets are provided within the Algorithms for Threat
Detection (ATD) program, funded by NSF, DTRA and NGA.

3.2.1. MIT Lincoln Lab Challenge Data

MIT Lincoln Lab provides a package of four data sets, two of
which are for released gas and two for embedded gas. In each
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Fig. 3. Top left: radiance against wavenumber of 5 samples
each from the groups of sky, ground and plume. Top right:
the NSS scores of 10 samples computed by 1 subspace and
2 subspaces respectively. Bottom left: histogram of the NSS
scores of using 1 subspace. Bottom right: histogram of the
NSS scores of using 2 subspace.

of the four, available measures include a radiance data cube,
its matrix form, the absorption coefficient spectrum for the
gas of interest, plume present mask and some other quantities.
The chemical needs to be detected based on a single cube,
which is roughly of the size 200×300×100, where 200×300
is the spatial size and 100 is the sensor spectrum size.
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Fig. 4. Comparison between single and mixture models using
ROC curves and detection maps.

We evaluate the performance of the three detectors
(NMF, NSS, LC) and their corresponding mixture models
(mixNMF, mixNSS, mixLC). The receiver operating charac-
teristic (ROC) curves and the detection maps are shown in
Figure 4 for one of the embedded data cubes (also the most
difficult one). From the figure we see that using mixture mod-
els for background can improve the detection results. Among
the three algorithms, mixture LC works the best.



3.2.2. Fabry-Perot Interferometer Sensor Data

This data set contains five time series of hyperspectral data,
corresponding to different combinations of the kind of chem-
ical material, the release amount, and the sensor used. We
first checked the time derivatives of the spectra (along the se-
quence) but did not observe anything useful. We then applied
our algorithm without utilizing the temporal information and
compared our results with ACE [4] in Figure 5. We see that
our detection map is consistently clearer than ACE. In this
experiment, we used the first frame for background modeling
and the 30th frame for testing (for all data sets); future work
will utilize multiple clean frames for enhanced background
modeling.
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Fig. 5. Detection results by our estimator TmixLC (left column)
and ACE (right column) on the five hyperspectral movies of
the Fabry-Perot data set. Note that our detection map is con-
sistently cleaner than ACE.


