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Zero-field positive muon-spin-relaxation (u*SR) measurements on (Y;-xPrx)Ba:Cu;O;
(x=1.0, 0.8, 0.6, 0.58, and 0.54) show clear evidence for antiferromagnetic ordering of the Cu
moments within the Cu-O planes. Néel temperatures are approximately 285, 220, 35, 30, and 20
K for x=1.0, 0.8, 0.6, 0.58, and 0.54, respectively. For x =0.50 we observe a fast-relaxing com-
ponent and a long-time tail of the muon polarization, reminiscent of spin-glass behavior. Super-
conductivity and spin-glass-like magnetism appear to coexist for x near 0.50. For x =1.0 the fully
developed local magnetic field is ~16 mT, but decreases to ~12 mT at T=17 K, presumably
due to the onset of additional ordering. The Néel temperature for oxygen-reduced PrBa;Cu3Os is

approximately 325 K.

In spite of voluminous data accumulated during the last
three years on high-temperature superconducting oxides,
the nature of the superconducting ground state and the
pairing mechanism remain unclear. Models based on both
conventional phonon-mediated pairing! and nonconven-
tional mechanisms?~* have been proposed to account for
the high transition temperatures 7.. The discovery of an-
tiferromagnetism with strong superexchange interactions
between the Cu* ions in insulating La;CuO4 (Ref. 5)
and in oxygen-deficient YBa;Cu3;O;-; (Y-Ba-Cu-O)
(Refs. 6 and 7) has focused attention on magnetic or
spin-fluctuation-mediated BCS-like models® and on new
“magnetic pairing” models.* Experimental information
on the interplay between superconductivity and magne-
tism may, therefore, provide clues pertaining to formation
of the superconducting ground state.

It is well known that rare-earth R substitution for Y in
RBa;Cu3;07 does not affect superconductivity except for
R=Ce, Tb, Pm, and Pr. Ce- and Tb-based compounds
yield multiphase samples, and Pm is radioactively unsta-
ble,® thus rendering these compounds difficult to study.
However (Y| -,Pr,)Ba,Cu;0; exhibits superconductivity
and magnetism for certain values of x, retains the ortho-
rhombic structure, and is oxygen stable for all values of
x.° These properties make this an attractive system for in-
vestigating the interplay between superconductivity and
mag~stism in high-temperature superconductors (HTS).

In this work we report zero-field muon-spin-relaxation
(Z7-uSR) observations of static magnetic ordering in
(Y —xPry)Ba;CuiO; for x=0.54. For x=1.0, Tn,
=285 K. A lower magnetic ordering transition T2 is
also observed, which is consistent with the magnetic phase
determined by specific-heat and magnetic-susceptibility
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measurements.” Results of these latter measurements, in
addition to neutron-diffraction results, '° suggest that T
is associated with the magnetic ordering of Pr** (J=3%)
ions on the Y sublattices. The uSR results, however, do
not rule out the possibility of magnetic ordering of Cu ions
within the Cu-O chains. The upper magnetic ordering
temperature Tn; reported here is presumably associated
with Cu?* ordering of the Cu ions within the Cu-O
planes, which is consistent with recent Mdssbauer re-
sults.!! This study is unique in that the interplay between
magnetism and superconductivity in the archetypal HTS,
Y-Ba-Cu-O, can be examined without complications asso-
ciated with structural changes or variable oxygen content.

Polycrystalline samples of (Y, -xPr,)Ba;Cu;O; (0=<x
= 1.0) were prepared using conventional solid-state reac-
tion techniques.® No evidence for phase separation was
found.® X-ray- and neutron-diffraction studies indicated
that the samples crystallized in an orthorhombic structure
with less than 2% impurity phases for all values of x. The
cell volume V. vs x followed Vegard’s law for 0 =x < 1.
The Pr concentration dependence of ¥, and the effective
paramagnetic moment u.g suggest that the Pr valence is
reasonably independent of x. A graph of u.s vs x indi-
cates that the Pr ions are close to 4 *.

The uSR experiments were done at the stopped muon
channel of the Los Alamos Clinton P. Anderson Meson
Physics Facility using standard zero-field (ZF) tech-
niques.'? Briefly, spin-polarized positive muons are im-
planted into a sample and the decay positrons are detected
by counters located in the forward (direction of initial
muon momentum) and backward directions. In a zero
external field (in the experiment the field was nulled to
+2 uT by trim coils) the muon experiences only the
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internal magnetic field. Consequently, in an antifer-
romagnet one should observe one (or more) discrete fre-
quencies determined by the magnitude of the local mag-
netic field at the muon site, ie., @, =y,Hic (7./2%
=1.355 MhzT ).

Representative ZF-uSR spectra for PrBa,Cu3;O7 taken
at 300 and 180 K are shown in Figs. 1(a) and 1(b). At
300 K the internal magnetic field is due to randomly
oriented, quasistatic Cu nuclear moments, which depolar-
ize the muon according to G(¢) =exp(— + 6%2), where o
is a Gaussian depolarization rate related to the second
moment of the local-field distribution at the muon site.
The solid line of Fig. 1(a) is a Gaussian fit to the data
with 0=0.36 us~!. In contrast, the spectrum taken at
180 K shows oscillatory behavior with a well-defined
muon frequency at 1.85 MHz. This is clear evidence for
the existence of an ordered, local magnetic field. Similar
results were obtained for x =0.54, 0.58, 0.6, and O0.8.
Muon precessional frequencies for x =1.0, 0.8, and 0.6
are shown in Fig. 2; for clarity the x =0.58 and 0.54 data
are not plotted. The Néel temperatures are approximate-
ly 285, 220, 35, 30, and 20 K for x =1.0, 0.8, 0.6, 0.58,
and 0.54, respectively.

Neutron-scattering measurements on oxygen-deficient
YBa,;Cu3O¢+4 (Ref. 13) and NdBa;CuiOg+, (Ref. 14)
have established that for A < 0.4 antiferromagnetic order-
ing of the Cu atoms within the CuO; planes occurs. The
magnetic structure is composed of strong nearest-neighbor
antiferromagnetic couplings of the Cu spins within the
Cu-O; layers with antiferromagnetic alignment of the
nearest-neighbor spins in adjacent layers. The magnetic
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FIG. 1. ZF-uSR spectra for PrBa;Cu;07 taken at (a) 300 K
and (b) 180 K. The oscillatory pattern in (b) is clear evidence
for magnetic ordering. No ordering is evident in (a).
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FIG. 2. Zero-field uSR frequencies for (Y;-xPrx)Ba;Cu3O,
(x=1.0, 0.8, and 0.6) as a function of temperature. Néel tem-
peratures are Tni—~285, 220, and 35 K, respectively. The
reduction in frequency near 20 K (for x=1.0) and 7 K (for
x =0.6) is due to additional magnetic ordering.

moments are constrained to lie in the plane. Evidence for
antiferromagnetic ordering of the Cu moments within the
oxygen-deficient chains of these systems has also been
given.”!* Based on these results we conclude that the
magnetic ordering in (Pr,Y,-,)Ba,Cu307 as observed by
ZF-uSR is associated with the Cu?* ordering of the Cu
ions within the Cu-O planes, which is consistent with simi-
lar conclusions that have been derived from Mdssbauer
studies. !

A second magnetic ordering transition occurs for
x=1.0 at Tn2=20 K, as shown in Fig. 2. This is con-
sistent with the transition observed by magnetic suscepti-
bility, specific heat, and neutron scattering, and has been
associated with the magnetic ordering of Pr*t (J=3)
ions on the Y sublattice.>'® The available uSR data
(x =1.0 and 0.6) indeed suggest that additional magnetic
ordering is occurring at these temperatures (~20 and 7
K) with the result that the magnitude of H\, is reduced
from ~16 to ~12 mT. This ordering may be due to Pr
moments as suggested above; however, our data do not
preclude the possibility that it could also be associated
with ordering of Cu moments within the chains, and note
that several experimental results® are inconsistent with
the notion of conventional antiferromagnetic Pr-moment
ordering. The 16-mT field associated with the Cu-plane
ordering in this system is comparable to the 20- to 30-mT
field observed in YBa,Cu3Og (Ref. 6).

The experimentally determined phase diagram for
(Y| -xPr,)Ba,Cu30; is shown in Fig. 3. Ty, is derived
from zero-field uSR data and is attributed to antiferro-
magnetic ordering of Cu within the Cu-O planes. Notice
that for x <0.54 (intersection of the Tn; and T, vs x
curves) we show a dashed-dotted line indicating that
spin-glass-like magnetism (as discussed below) rather
than antiferromagnetism is observed in this region. The
T. vs x curve is based on susceptibility and resistivity
measurements, and T, is deduced from uSR, susceptibil-
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FIG. 3. Phase diagram for (Y| -xPr,)Ba;Cu307. Tn corre-
sponds to antiferromagnetic ordering of Cu moments within the
Cu-O planes as determined by ZF-uSR. Spin-glass-like magne-
tism occurs for x < 0.54 (dashed-dotted line).

ity, specific-heat, and neutron-scattering measurements.
uSR data taken in a 100-mT transverse field confirm the
T. vs x curve.

The region of the phase diagram corresponding to
x ~0.50 is of special interest because it represents a cross-
over of the ground state from magnetism to superconduc-
tivity. In Fig. 4 we show the muon depolarization for
x=0.60, 0.58, and 0.50 at a fixed temperature of 5 K. A
well-defined frequency exists for x =0.60 and 0.58, but
not for x =0.50. For the latter concentration there is a
very fast relaxing component of the muon polarization in
addition to a long-time tail. We attempted to fit the data
of Fig. 4(c) with various known muon relaxation func-
tions. The best fit [shown as the solid line of Fig. 4(c)]
was obtained with a spin-glass function, which assumed
slow ‘guctuations of the time-varying local magnetic
field,

G.(t)=3% (1 —aot)exp(—aot)+ § expl— (2¢/37)]1, (1)

where ag is the width of the muon precession frequency
distribution and t is the correlation time. From the fitted
data we obtained a fluctuation rate of 10° s ~!. However,
the goodness of this fit alone does not prove that the un-
derlying magnetism is that of a spin glass, although it
would not be unreasonable to assume that the crossover
from antiferromagnetism to superconductivity produced a
complex magnetic state that was spin-glass like. This is
especially true near 7T =5 K where the Pr-moment order-
ing and/or Cu-chain ordering may also be contributing to
the formation of this complex ground state, although the
extrapolated Néel temperature for x =0.50 is only 3.4 K
(Ref. 1). Nevertheless, this region of the phase diagram
presents a rich arena for investigating the interplay be-
tween magnetism and superconductivity in oxide super-
conductors, especially in (Y| -,Pr,)Ba;Cu30; because it
retains the orthorhombic structure for 0 < x < 1.

Based on our #SR data we conclude that no clear signa-
ture of antiferromagnetism exists in (Y —Pr,)Ba;Cu;0;
for a concentration of x < 0.54. Thus the conclusion that
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FIG. 4. Zero-field uSR spectra for (Y -xPrx)Ba;Cu305 tak-
en at T=5 K. The concentrations are (a) x =0.60, (b) x =0.58,
and (c) x =0.50.

antiferromagnetism and superconductivity do not coexist
in this system, as suggested by Felner et al.,!! is in agree-
ment with our observations. On the other hand, we sug-
gest that spin-glass-like magnetism and superconductivity
do indeed coexist.

Zero-field uSR data taken on PrBa,Cu3Og show that
magnetic ordering occurs in this system at a temperature
higher than room temperature, which is the highest
operating point of our spectrometer. However, by extra-
polating the values taken at and below room temperature
we estimate the Néel temperature to be approximately
325 K. Interestingly, two distinct frequencies are ob-
served in PrBa;Cu30g, which we attribute to the existence
of two magnetically inequivalent muon stopping sites. For
T =250 and 15 K the measured muon precessional fre-
quencies are v;=1.5 MHz and v,=3.5 MHz; v, =2.2
MHz and v, =4.7 MHz, respectively.

In summary, zero-field uSR experiments have been
conducted on (Y|-,Pr,)Ba;Cu3O; as a function of con-
centration and temperature. The results suggest that anti-
ferromagnetic ordering of the Cu moments within the
Cu-O planes occurs for x =1.0, 0.80, 0.60, 0.58, and 0.54
with Néel temperatures of 285, 220, 35, 30, and 20 K, re-
spectively. For x =1 the magnitude of the fully developed
local magnetic field at the muon site is ~16 mT, but is re-
duced to ~12 mT near 20 K due to the onset of addition-
al magnetic ordering, which is probably associated with
Pr-moment ordering and/or Cu ordering within the Cu-O
chains. Additionally, coexistent spin-glass-like magne-
tism and superconductivity occur for x =0.50. Zero-field
USR data taken on PrBa;Cu3;O¢ show that it is also anti-
ferromagnetic with an estimated Néel temperature of 325
K.
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