
 Historically, Huge Performance Gains came from

Huge Clock Frequency Increases

Unfortunately ……….

Source: Patterson, Computer Organization and Design

Hardware Solution

Evolution of Computer Architectures

Micro-Scopic View

Clock Rate Limits Have Been Reached

Blocked by Heat and Power “Wall”

Hardware Solution

Evolution of Computer Architectures

Micro-Scopic View

Single Core vs. Dual Core

Single Core clocked at 2f Dual Core clocked at f

2f Throughput f + f

8f 3 Heat f 3 + f 3

Hardware Solution

Evolution of Computer Architectures

Micro-Scopic View

 Instruction-Level Parallelism (ILP) was also Heavily Used

 Implemented On-Chip via Hardware

 Transparent to Software (No impact on Programmers)

 We will Study Two Types:

 Pipelining (Intra-Instruction Parallelism)

 Multi-Function Units (Inter-Instruction Parallelism)

 ILP has provided reasonable speedups in the past,

Unfortunately…….

Effort

Performance

Scalar
In-Order

Moderate
Pipelining,
Look-Ahead

Very Deep Pipe,
Aggressive
Look-Ahead

Made sense to go
Superscalar and
Multi-Function:
Good ROI

Very little gain for
substantial effort

Hardware Solution

Evolution of Computer Architectures
 Gain - to - Effort Ratio of ILP beyond “Knee” of Curve
 Diminishing Returns due to

Increased Cost and Complexity of Extracting ILP

Hardware Solution

Evolution of Computer Architectures

Micro-Scopic View Summary

 Clock Frequency Scaling Limits have been Reached

 Era of Single Core Performance Increases has Ended

 All Future Micro-Processor Designs will be Multi-Core

 Evident in Chip Manufacturer’s RoadMaps

 No More “Free Lunch” for Software Programmers

 Multiple Cores Will Directly Expose Parallelism to SW

 Instruction Level Parallelism Limits have been Reached

Hardware Solution

Evolution of Computer Architectures

Sequential Processing Parallel Processing

Micro

Macro

Hardware Solution

Technology Curve

Cost / Performance
vs.

Performance

Performance

Cost

Performance

Under-Utilization

Optimum Utilization
Over-

Utilization

Hardware Solution

Technology Curve

Sequential Processing

Cost / Performance
vs.

Performance

Performance

Cost

Performance

2XX

$

$$$

$$$$$$
Parallel Processing
$$

Parallel Processing is really an Evolution in

 Micro- and Macro-Architecture Hardware

 That provides a Solution to:

• The Heat and Power Wall

• The Limitations of ILP

• Cost-Effective Higher Performance

Parallel Processing is also a Software Challenge

Key Points

Hardware Solution

Software Challenge

Change in Hardware Requires Change in Software

 The Car (Hardware) has Changed

• From a Sequential Engine To a Parallel Engine

 The Driver (Software) Must Change Driving Techniques

• Otherwise, Sub-Optimal Performance will Result

Hardware
&

Software

Car
&

Driver

Software Challenge

 Lack of Tools Compounds Problem

• Existing Tool Chain only for Sequential Programming

 Need New Parallel Programming Tools & Infrastructure

• Effective Models for Parallel Systems

• Constructs to make Parallel Architecture more Visible

• Languages to More Clearly Express Parallelism

• Reverse Engineering Analysis Tools

• To Assist with Conversion of Sequential to Parallel

 Especially for Optimized Sequential Code

Lack of Good PP Tools

Software Challenge

 Parallelism can Give Rise to a New Class of Problems

• Caused by the Interactions Between Parallel Threads

 Race Condition:

Multiple Threads Perform Concurrent Access

to the Same Shared Memory Location

 Threads “Race” Against Each Other

• Execution order is assumed but cannot be guaranteed

• Outcome depends on which one wins (by chance)

• Results in Non-Deterministic Behavior

Race Conditions

 Race Conditions are Especially Hard to Detect & Debug

• Errors are Very Subtle

• No Apparent “Failure” Occurs

• Program Continues to Run “Normally”

• Program Completes “Normally”

• Errors are Intermittent

• Hard to Reproduce and Diagnose

• Errors Can Slip Through SQA Testing Process

• Potential Lurking Bug

 Most Common Error in Parallel Programs

Software Challenge

Race Conditions

Software Challenge

Semaphores

 Semaphores Offer a Solution to Race Conditions

• However Semaphores themselves can cause Problems:

• Introduce Overhead

• Can Create Bottlenecks

• Mutually Exclusive (one-at-a-time) Access

Software Challenge

 Another Potential Problem Arising From Parallelism

 Deadlock:

Two or More Threads are Blocked because

Each is Waiting for a Resource Held by the Other

Deadlock

Thread 1 Thread 2

Sem_B

Sem_A

Requests

Requests

Held by

Held by

Software Challenge

Deadlock

 Not as Hard as Race Conditions

• Errors are More Obvious

• System Usually Freezes

 But Similar to Race Conditions

• Errors are Intermittent

• Hard to Detect, Reproduce, Diagnose, Debug

• Errors Can Slip Through SQA Testing Process

• Potential Lurking Bug

 Another Common Error in Parallel Programs

Software Challenge

 Time-Sharing = Multi-Tasking = Multiplexing = Concurrent

 One Processor is being shared (switched quickly)

between tasks making them appear to be “Concurrent”

 But it’s essentially just an illusion, because

at any instant in time, only one task is really executing

 Concurrency is not the same as true Parallelism

Concurrent: Two Threads are In Progress at Same Time
vs.

Parallelism: Two Threads are Executing at Same Time

Concurrent vs. Parallel

Software Challenge

 SW Problem is Harder than that from “Time-Sharing” Era

• Multi-Cores (Micro) & Multi-Nodes (Macro) HW enable:

- Not Just “Multi-Tasking” or Concurrency, but

- True Parallelism

 Potential Problem when migrating “Multi-Tasking” Code

 Consider a SW Application Programmed with Two Tasks:

• One task is assigned a low priority; other a high priority

• In Multi-Tasking: LP task cannot run until HP is done

• Programmer could have assumed Mutual Exclusion

• In Parallel System: LP and HP can run at Same Time

Concurrent vs. Parallel

Software Challenge

 Harder Because of Intermittent, Non-Deterministic Bugs

 Time Sensitive (Temporally Aware) SW Tools Needed

 New Parallel Debugging Tools Required

• Need to Exert Temporal Control over Multiple Threads

• Ideal Debugger would have:

Reverse Execution Capability (cycle-accurate undo)

Instant Replay Capability (w/ accurate time counter)

 Cannot Use Ad-hoc Debugging via PRINT Statements

• Adds Extra Instructions which could Change Timing

Debugging

Software Challenge - Technical

Amdahl’s Law

 Parallel Speedup is Limited by the Amount of Serial Code

Maximum Theoretical Speedup from Amdahl's Law

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

Number of cores

S
p

e
e

du
p

%serial= 0

%serial=10

%serial=20

%serial=30

%serial=40

%serial=50

Software Challenge - Business

Changing Technology Curves is Hard

Cost / Performance vs. Performance

Performance

Cost

Performance

 Never Ride Technology Curve “Up” into Over-Utilization

Sequential

Parallel

Parallel Programming is Hard

• More Complex

• Lack of Tools

• New Type of Bugs

• Race Conditions

• Deadlocks

• Harder to Debug, Test, Profile, Tune, Scale

Parallel Programming is a Software Challenge

Key Points

Software Challenge

Opportunities
 The Universe is Inherently Parallel

• Natural Physical and Social / Work Processes

• Weather, Galaxy Formation, Epidemics, Traffic Jam

 Can Leverage Unique Capabilities offered by Parallelism

 Add New Features via Separate Parallel Modules

• Avoids Re-engineering of Old Module

• More Functionality

• No Increase in Wall Processing Times

 Speculative Computation

Precompute alternatives to Minimize Response Time

e.g.) Video Game Up / Down / Left / Right

More Responsive User Interfaces

Opportunities
 (Yet) Undiscovered Technical Opportunities

 New Parallel Algorithms

 Super-Linear Speedups

• Parallel Computer has
N times more Memory

• Larger % of SW can fit
in upper Levels of
Memory Hierarchy

• “Divide and Conquer”
leverages faster Mems

• An Important Reason for
using Parallel Computers

Super-Linear

Will Feedback Cycle Prevail ?

 If Hardware goes Parallel, Will Software go Parallel Too?

Computer
Power

New
Applications

Hardware

Software

