s 1 ;
: . Intel Xeon. 3.6 GHz_ 64-bit Intel Xeon, 3.6 GHz
ﬂ AMD Opteron, 2.2 GHz g—= 5?6455’35
;55354
| 1 a1
g

."'1 83 = 20%,
PowarPC 604, 0.1GHz

, L :
w Alpha 21064, 0.2 GHz

-h;-!a-_
Performance (vs. VAX-11/780)

52%year

VAX-11/780 =2

. .-=" 25%/year o ¢ viax-11/785

L A A A A A A A —_—

0 =
1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

¢ Historically, Huge Performance Gains came from

Huge Clock Frequency Increases

Hardware Solution
Evolution of Computer Architectures
Micro-Scopic View

Clock Rate Limits Have Been Reached

Clock Rate 200

ss\ -

Power (Watts)

Clock Rate (MHz)

80486
(1989)
Pentium
(1993)
Pentium
Pro (1997)
Pentium 4
Willamette
(2001)
Pentium 4
Prescott
(2004)
Core 2
Kentsfield
(2007)

Source: Patterson, Computer Organization and Design

Hardware Solution

Evolution of Computer Architectures
Micro-Scopic View

8 (Blocked by Heat and Power “Wall”
' ;‘ 10,000 Sun's Surface

iy

o

-

Rocket Mozzle

—
=
=
=

MNuclear Reactor

100 il

8086 Hot Plate
4004 8085

8008
288 386

8080 486

_y
]

Power Density (W/cm?)

1

i 70 ‘80 ‘90 00 10
I A

s Intel Developer Forum, Spring 2004 - Pat Gelsinger

Single Core vs. Dual Core

Single Core clocked at 2f Dual Core clocked at f

2f Throughput

gf ° Heat
—l .

X

Hardware Solution

Evolution of Computer Architectures
Micro-Scopic View

» Implemented On-Chip via Hardware
» Transparent to Software (No impact on Programmers)

» We will Study Two Types:
» Pipelining (Intra-Instruction Parallelism)
» Multi-Function Units (Inter-Instruction Parallelism)

» |ILP has provided reasonable speedups in the past,

Hardware Solution

Evolution of Computer Architectures

Superscalar and
Multi-Function:
ROI

Made sense to go
Performance [

Very little gain for
substantial effort

Scalar Moderate Very Deep Pipe,
In-Order Pipelining, Aggressive
Look-Ahead Look-Ahead

Hardware Solution

Evolution of Computer Architectures
Micro-Scopic View Summary

» Clock Frequency Scaling Limits have been Reached

> Instruction Level Parallelism Limits have been Reached

» Era of Single Core Performance Increases has Ended

» No More “Free Lunch” for Software Programmers
» Multiple Cores Will Directly Expose Parallelism to SW

» All Future Micro-Processor Designs will be Multi-Core

Hardware Solution
Evolution of Computer Architectures

Hardware Solution
Technology Curve

Cost / Performance

Performance \VASH
Performance

> Under-Utilization

Optimum Utilization L
Over-

!

Utilization

Performance

Hardware Solution
Technology Curve

Cost Cost / Performance
© = Performance VS.
Performance

Performance

Key Points

Hardware Solution

& > Parallel Processing is really an Evolution in

» Micro- and Macro-Architecture Hardware
» That provides a Solution to:
 The Heat and Power Wall
 The Limitations of ILP
« Cost-Effective Higher Performance

Software Challenge

Change in Hardware Requires Change in Software

% The Car (Hardware) has Changed
' From a Sequential Engine To a Parallel Engine

21
= *» The Driver (Software) Must Change Driving Techniques

e Otherwise, Sub-Optimal Performance will Result

Car Hardware
& &
Driver Software

Software Challenge
Lack of Good PP Tools

~ % Lack of Tools Compounds Problem

e Existing Tool Chain only for Sequential Programming

** Need New Parallel Programming Tools & Infrastructtire
» Effective Models for Parallel Systems
« Constructs to make Parallel Architecture more Visible
 Languages to More Clearly Express Parallelism
« Reverse Engineering Analysis Tools
» To Assist with Conversion of Sequential to Parallel
= Especially for Optimized Sequential Code

Software Challenge
Race Conditions

"% Parallelism can Give Rise to a New Class of Problems
o Caused by the Interactions Between Parallel Threads

\/

% Race Condition:

Threads “Race” Against Each Other

e Execution order is assumed but cannot be guaranteed
 Outcome depends on which one wins (by chance)

e Results in Non-Deterministic Behavior

Software Challenge
Race Conditions

© % Race Conditions are Especially Hard to Detect & Debug

e Errors are Very Subtle
* No Apparent “Failure” Occurs
* Program Continues to Run “Normally”
e Program Completes “Normally”

* Errors are Intermittent
 Hard to Reproduce and Diagnhose

* Errors Can Slip Through SQA Testing Process
e Potential Lurking Bug

Software Challenge
Semaphores

« Semaphores Offer a Solution to Race Conditions
« However Semaphores themselves can cause Problems:
 Introduce Overhead
e Can Create Bottlenecks
 Mutually Exclusive (one-at-a-time) Access

Software Challenge
Deadlock

.~ s Another Potential Problem Arising From Parallelism

= % Deadlock:

Requests Held by

D D

Held by Requests

Software Challenge
Deadlock

~ w» Not as Hard as Race Conditions

e Errors are More Obvious

o System Usually Freezes e

k- -+ But Similar to Race Conditions

* Errors are Intermittent
« Hard to Detect, Reproduce, Diagnose, Debug

* Errors Can Slip Through SQA Testing Process
e Potential Lurking Bug

Software Challenge
Concurrent vs. Parallel

ﬂ 1 % Time-Sharing = Multi-Tasking = Multiplexing = Concurrent

» One Processor is being shared (switched quickly)
between tasks making them appear to be “Concurrent™

» But it's essentially just an illusion, because
at any instant in time, only one task is really executing

s Concurrency Is not the same as true Parallelism

Concurrent: Two Threads are In Progress at Same Time
VS.

Parallelism: Two Threads are at Same Time

a@ Software Challenge
P Concurrent vs. Parallel

% < SW Problem is Harder than that from “Time-Sharing” Era
¢ Multi-Cores (Micro) & Multi-Nodes (Macro) HW enable:
- Not Just “Multi-Tasking” or Concurrency, but
- True Parallelism

\J

s Potential Problem when migrating “Multi-Tasking” Code

* Consider a SW Application Programmed with Two Tasks:
* One task Is assigned a low priority; other a high priority
 In Multi-Tasking: LP task cannot run until HP is done

 Programmer could have assumed Mutual Exclusion

e |n Parallel System: LP and HP can run at Same Time

Software Challenge
Debugging

Harder Because of Intermittent, Non-Deterministic Bugs

Time Sensitive (Temporally Aware) SW Tools Needed

New Parallel Debugging Tools Required
 Need to Exert Temporal Control over Multiple Threads
 |deal Debugger would have:
Reverse Execution Capability (cycle-accurate undo)
Instant Replay Capability (w/ accurate time counter)

Cannot Use Ad-hoc Debugging via PRINT Statements

e Adds Extra Instructions which could Change Timing

Software Challenge - Technical
Amdahl’'s Law

"% Parallel Speedup Is Limited by the Amount of Serial Code

Maximum Theoretical Speedup from Amdahl's Law

— Opserial= 0
- Opserial=10
%serial=20
%serial=30
- Opserial=40
%serial=50

Number of cores

Software Challenge - Business
Changing Technology Curves Is Hard

"2 Never Ride Technology Curve “Up” into Over-Utilization

Cost / Performance vs. Performance

Sequential

Performance

Performance

Key Points

Software Challenge

e More Complex
e |Lack of Tools
e New Type of Bugs
e Race Conditions
e Deadlocks
e Harder to Debug, Test, Profile, Tune, Scale

Opportunities

¢ The Universe is Inherently Parallel
e Natural Physical and Social / Work Processes
 Weather, Galaxy Formation, Epidemics, Traffic Jam

& < Can Leverage Unique Capabilities offered by Parallelism

** Add New Features via Separate Parallel Modules
* Avoids Re-engineering of Old Module
 More Functionality
* No Increase in Wall Processing Times

“ Speculative Computation
Precompute alternatives to Minimize Response Time
e.g.) Video Game Up / Down / Left / Right
More Responsive User Interfaces

Opportunities

¢ (Yet) Undiscovered Technical Opportunities

¢} % < New Parallel Algorithms

® = & Super-Linear Speedups

e Parallel Computer has
N times more Memory

e Larger % of SW can fit
In upper Levels of
Memory Hierarchy

e “Divide and Conquer”
leverages faster Mems

* An Important Reason for
using Parallel Computers

Observed Speedup

Super-Linear

Occasional

Number of Processors

Will Feedback Cycle Prevail ?

Hardware

Computer
Power

New
Applications

Software

, | If Hardware goes Parallel, Will Software go Parallel Too?

